Jump to content

Search the Community

Showing results for tags 'lambert'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • General
    • Announcements
    • Welcome Aboard
  • Kerbal Space Program 2
    • KSP2 Dev Updates
    • KSP2 Discussion
    • KSP2 Suggestions and Development Discussion
    • Challenges & Mission Ideas
    • The KSP2 Spacecraft Exchange
    • Mission Reports
    • KSP2 Prelaunch Archive
  • Kerbal Space Program 2 Gameplay & Technical Support
    • KSP2 Gameplay Questions and Tutorials
    • KSP2 Technical Support (PC, unmodded installs)
    • KSP2 Technical Support (PC, modded installs)
  • Kerbal Space Program 2 Mods
    • KSP2 Mod Discussions
    • KSP2 Mod Releases
    • KSP2 Mod Development
  • Kerbal Space Program 1
    • KSP1 The Daily Kerbal
    • KSP1 Discussion
    • KSP1 Suggestions & Development Discussion
    • KSP1 Challenges & Mission ideas
    • KSP1 The Spacecraft Exchange
    • KSP1 Mission Reports
    • KSP1 Gameplay and Technical Support
    • KSP1 Mods
    • KSP1 Expansions
  • Community
    • Science & Spaceflight
    • Kerbal Network
    • The Lounge
    • KSP Fan Works
  • International
    • International
  • KerbalEDU
    • KerbalEDU
    • KerbalEDU Website

Categories

There are no results to display.


Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Skype


Twitter


About me


Location


Interests

Found 1 result

  1. I've taken on the project of writing an interplanetary trajectory optimization tool and a comparison of algorithm efficiency for the problem at arbitrary starting points. Looking further into the problem, however, I have a question that I can't seem to answer. When you optimize an interplanetary trajectory in a patched-conics approximation like KSP, how do initial and target orbit influence the problem? Specifically, I understand how the 'interplanetary' part works. Given the position of two planets, you can calculate the orbit that will intersect one position at one time (the departure date) and the position of the other at another time (the arrival date) easily by cranking through Lambert's Problem for the solar orbit case. However, how do you account for leaving the orbit of the start planet and arriving in orbit of the destination planet? Put another way, how do you calculate ejection angle or the optimum burn to leave/enter the patched conic gravity well?
×
×
  • Create New...