Search the Community
Showing results for tags 'equation'.
-
TLDR I did some tests with various rotors to determine which yields the highest lift/weight ratio for heavy payloads on either Kerbin or Eve. In the static tests I’ve performed on the ground of Kerbin and Eve, I noticed that the large helicopter Type S blades provide the most lift per tonnes rotors+motor . In my flawed tests, 8 rotors per motor work best on Kerbin and 4 rotors per motor work best on Eve. I was also able to roughly determine the maximum mass of a craft at which it would still fly. Long story I’ve been running tests with various sizes of propellers
-
I've been working on an program to calculate combined takeoff and landing delta-v from a wide range of planet sizes (comets through superearths) and atmospheric thicknesses (vacuum through supervenuses). I'm reasonably happy with the takeoff delta-v calculation - a two-burn Hohmann transfer from surface to orbit assuming a vacuum, plus a term to approximate atmospheric drag. It's not perfect - it makes several assumptions including unlimited TWR on the rocket - but it's a decent first approximation. The landing delta-v calculation involves a deorbit burn and then a braking burn.