Jump to content

Search the Community

Showing results for tags 'w/kg'.

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


Forums

  • General
    • Announcements
    • Welcome Aboard
  • Kerbal Space Program 2
    • KSP 2 Discussion
    • KSP 2 Suggestions & Development Discussion
    • KSP 2 Dev Diaries
    • Show and Tell
  • Kerbal Space Program
    • The Daily Kerbal
    • KSP Discussion
    • KSP Suggestions & Development Discussion
    • Challenges & Mission ideas
    • The Spacecraft Exchange
    • KSP Fan Works
  • Community
    • Player Spotlight
    • Science & Spaceflight
    • Kerbal Network
    • The Lounge
  • Gameplay and Technical Support
    • Gameplay Questions and Tutorials
    • Technical Support (PC, unmodded installs)
    • Technical Support (PC, modded installs)
    • Technical Support (Console)
  • Add-ons
    • Add-on Discussions
    • Add-on Releases
    • Add-on Development
  • Making History Expansion
    • Making History Missions
    • Making History Discussion
    • Making History Support
  • Breaking Ground Expansion
    • Breaking Ground Discussion
    • Breaking Ground Support
  • International
    • International
  • KerbalEDU Forums
    • KerbalEDU
    • KerbalEDU Website

Find results in...

Find results that contain...


Date Created

  • Start

    End


Last Updated

  • Start

    End


Filter by number of...

Joined

  • Start

    End


Group


Website URL


Skype


Twitter


About me


Location


Interests

Found 1 result

  1. I'm thinking about diving deeper into the ion engines of KSP. Not only can I understand them better for KSP fanworks, in which the engine math would be described in great detail, but I can apply these principles for real-life. As a KSP example, the given values of the IX-6315 "Dawn" engine are: Isp = 4200 s Thrust = 2 kN Which is way higher than the real-life ion engines I've been seeing. Values I can easily calculate are: Mass flow rate for xenon propellant (kg/s) Exhaust velocity (m/s) Beam power (watts) Wet-to-dry mass ratios for certain dV requirements For certain phases, some parts will be jettisoned (e.g. I'm not going to carry an Apollo-style landing craft back home if I've already used it). Using this engine as an example, how do I calculate the specific power (W/kg) for it? With that value, I can divide it by the input power to get the mass of the power supply system required. Example: an engine with an Isp=2000s and a Thrust = 0.2 N. A value of 100 W/kg was given for the specific power, but I have no idea how they got it. mass of power supply system = (Power required in W) / (specific power in W/kg) This might not matter so much in KSP, but it does for real-life calculations. Plus, as an aerospace engineering major, I want to better understand what goes into xenon-powered spacecraft. If someone could help me, that would be nice.
×
×
  • Create New...