Search the Community

Showing results for tags 'propusion'.

More search options

  • Search By Tags

    Type tags separated by commas.
  • Search By Author

Content Type


  • General
    • Announcements
    • The Daily Kerbal
  • General KSP
    • KSP Discussion
    • Suggestions & Development Discussion
    • Challenges & Mission ideas
    • The Spacecraft Exchange
    • KSP Fan Works
  • Gameplay and Technical Support
    • Gameplay Questions and Tutorials
    • Technical Support (PC, unmodded installs)
    • Technical Support (PC, modded installs)
    • Technical Support (PlayStation 4, XBox One)
  • Add-ons
    • Add-on Discussions
    • Add-on Releases
    • Add-on Development
  • Community
    • Welcome Aboard
    • Science & Spaceflight
    • Kerbal Network
    • The Lounge
  • International
    • International
  • KerbalEDU Forums
    • KerbalEDU
    • KerbalEDU Website
  • KSP Pre-release
    • 1.2.9 Pre-release Branch
    • 1.2.9 Pre-release Modding Discussions
    • 1.2.9 Pre-release Bug Tracker


  • Developer Articles

Found 1 result

  1. This is the KSPI-E support thread. For talk about new development and features request you have to be in the KSPI-E develpment thread KSP Interstellar Extended is a plugin for Kerbal Space Program, designed to encourage bootstrapping toward ever more advanced levels of technology as well as utilizing In-Situ resources to expand the reach of Kerbal civilization. KSP Interstellar Extended aims to continue in Fractals original KSPI vision in providing a realistic road to the stars. Players will first gain access to contemporary technologies that have not been widely applied to real space programs such as nuclear reactors, electrical generators and thermal rockets. By continuing down the CTT tech tree and performing more research, these parts can be upgraded and later surpassed by novel new technologies such as fusion and even antimatter power. We attempt to portray both the tremendous power of these technologies as well as their drawbacks, including the tremendous difficulty of obtaining resources like antimatter and the difficulties associated with storing it safely. The goal being to reward players who develop advanced infrastructure on other planets with new, novel and powerful technologies capable of helping Kerbals explore planets in new and exciting ways. The principal goal of KSP Interstellar is to expand Kerbal Space Program with interesting technologies and to provide a logical and compelling technological progression beginning with technologies that could have been available in the 1970s/1980s, then technologies that could be available within the next few years, progressing to technologies that may not be available for many decades, all the way out to speculative technologies that are physically reasonably but may or may not ever be realizable in practice. For KSP 1.0.5 Download version: 1.7.6 from Here For KSP 1.1.3 Download version 1.9.11 from Here For KSP 1.2.2 Download latest version 1.12.24 from Here source: Github If you appreciate what I create, please consider donating me a beer you can donate me with PayPal or support me by Patreon Download & Installation Instructions step 1: remove any existing KSPI installation (GameData\WarpPlugin folder) step 2: download KSPI-E and put the GameData in your KSP Folder (allow overwrite) step 3: re-install latest version of TweakScale step 4: (optionally) install KSP Filter Extensions. Recommended Star System/ Galaxy mods: ExtraSolar: Planets Beyond Kerbol extend an existing stock capaign ( with optional planet pack) into an Interstellar campaign Galactic Neighbourhood where your can visit your neighbour star systems with integrated planet packs To Boldly Go to create a unique procedural generated interstellar experience Real Solar System + RSS Constellations for the most realistic interstellar experience Kerbal StarSystems for a complete miniature galaxy experience Interstellar Adventure the name sais it all Other Worlds for an alternative interstellar experience Recommended Tool mods: Persistant Rotation for more effective Persitant Timewarp propulsion PreciseNode for navigation Challenges Documentation & Tutotials KSPI is one of the most sophisticated mods for KSP. To help you get started, you can make use of the following resources: KSPI-E for Dummies KSPI-E Guide by Nansuchao KSPI-E Technical Guide KSPI-E Wiki KSPI-E Youtube Videos: 9 part Russian Tutorial by @ThirdOfSeven 3 part EnglishTurorial by @Aaron Also: Main Features KSPI Extended includes new improvements and fixes from which the following are the key features: Improved realism of diversity Nuclear Engines Electric Engines Reactors Thermal and Electric Propellant Fuel Modes for Fission, Fusion Beamed power transmission Support KSPI-E add support for the following mods Basics KSPI-E Construction There are 6 basic components needed to create a working KSPI-E propulsion module are as follow Reactor - A reactor is needed to produce heat energy or charged particles which is used by other KSPI components to convert it into useful energy. Pebble Bed is recommended for high thrust/atmospheric launches and Molten Salt is recommended for long term usage for upper stage/satellites. Your choices will change as you unlock more components Generator - A generator is required to produce Electric Charge and MegaJoules, both resources are needed on almost any KSPI vessel. Megajoules are needed for KSPI engines which have ‘Electric Power Needed’ = Yes or Partial Radiators - Radiators are required to expel WasteHeat from the reactor, generator or engines. Without a radiator you will not be able to generate any power! Engine - Without an engine this wouldn’t be much of a propulsion module. Most engines operate most effectively when directly connected to the reactor. The reactor heat transfer performance values will indicate how much of the original energy is available if an engine is not directly connected to the reactor. The Atilla and Arcjet RCS thrusters do not require any direct connection to function at 100%. I recommend starting with either the Thermal Turbojet or Thermal Rocket nozzle. Propellant/Fuel - All Reactors and most Engines require propellant/fuel to operate. The Interstellar Fuel tanks are the standard containers that will be used to store the propellants. Hydrazine or LqdAmmonia are performance fuels and are be strongly recommended for Launch stages. Control - A probe core or crewed command module is also needed to operate the vessel. Common Issues All engines (except vacuum plasma thruster) must overcome the static pressure in the atmosphere and is better suited for vacuum usage and may not show any thrust in the atmosphere. Smaller thrusters will help overcome static pressure Research KSPI Is a High tech, hard science mod which gradualy unlocks sophisiticed technologies with advanced research . When researching KSPI techs, your are not forced into following a single path. Instead there are mutliple paths you can focus on. Nuclear Propulsion is a stock tech but it unlocks the first Nuclear Engine, the Solid NCore Nuclear Engine a.k.a. NERVA. It intitialy can only use LiquidFuel or on Hydrogen as a propellant, but as more Nuclear Propulsion Technology is reseached it is capable of using a divere variation of propellants Nuclear Power unlocks the first reacor which is specificly ment for fission power production in space, the Molten Salt Reactor which contains a build in thermal electric generator Advanced Nuclear Power unlocks the the modular Thermal Electric Generator, which when connected to a reactor can produce electric power Advanceded Nuclear Propulsion allows the NERVA to function in LATERN mode, meaning adding exygin in the nozzle to increase thrust, and unlocks the Thermal Launch Nozzle which can be put under modular reactor High Energy Nuclear Power unlocks the Particle Bed Reactor, which is capable of generating high amount of thermal heat at a low reactor mass. THe High Trust to Weight ratio makes it suitable of beinged used as a heavy single stage to otbit, which is it's main intended purpose. Efficient Nuclear Propulsion introduces the Closed Cycle Gas Core Reactor which can achieve significantly higher Isp than the NERVA Experimental Nuclear Propulsion unlocks the Open Cycle Gas Core Reacor, which offers even higher ISP than the close cycle gas gore reactor but at the expanse of versatility as it is only capable of orating while in space. Exotic Nuclear Propulsion unlockes the Fission Fragment reactor, which thanks to its ncredible high Isp allow allow to the travel to anywhere in the solar system and behind. The reactor can also be used for High efficiency electric power production Fusion Power unlucks the First Reactors intended for power production, the Magnetic Confinement Fusion Reactor which used super powererfull magnetcs to contain a plasma at high temperatures. Although thesereactors are bulky, they have ability to contain charged particles which can directly converted into energy at high efficiencies or redirected to a magnetic nozzle for Insterstellar HIgh Isp. For smaller vessels, The Magnetic Target Fusion Reactor is a highly efficient heat engine, converting fusion fuel and lithium into thermal power. Fusion Propusion unlock the first fusion engine which are inteded for propusion. Advanced Fusion unlocks the second tier of fusion fuels and introduces 2 advanced fusion enginess, the Tokamak Fusion engine and the VISTA Inertial Fusion Engine. The Tokamak Fusion engine has an integrated magnetic nozzle which can use any single atom propellant at high Isp and the Vista offers High Isp with High thrust levels Nuclear Engine/Reactors The Core of KSPI are its engine/reactor, they make the magic happen. There are now 5 Fission engines and 5 Fission Reactors, 5 types of fusion reactor, and 2 eotic reactor each with the own characteristic behavior, excelling in a particular way (and therefore most fit for certain applications) Part Model Unlocking Technology Power Output (2.5m) Reactor/Engine Main Properties Description Nuclear Propulsion Improved Nuclear Propulsion Efficient Nuclear Propulsion Solid Core Nuclear Reactor is one of the first nuclear engine available capable of using nuclear energy for propulsion, allowing Isp roughly twice the Isp of Chemical rockets. It's thrust to weight using Liquid Hydrogen is initially too low for any launch except in the upper stages. With Advanced Nuclear Propulsion technology is becomes possible to operate in Liquid Oxygen augmented mode effectively tripping the thrust at the cost of 36% lower Isp. With the advent of higher Nuclear propulsion technologies, other propellant then Hydrogen become available as a possible propellant, which is more or less adventurous depending on the circumstances. Solid Core Reactor can also be used for High power production, but due to it's inability to replenish its fuel, has only limited endurance. Traveling Wave Reactor a.k.a. Candle reactor is a small reactor specificly targeted for small probes. The reactor function in many ways like a candle, where is slowly converts it fisionable material into energy. Nuclear power Improved Nuclear Power Nuclear Fuel Systems High Nuclear Power Systems 0.444 GW 0.666 GW 1.0 GW 1.5 GW Min Diameter: 0.625m Dry Mass (2.5m): 8 t Fuel Mass (2.5): 6 t Cost: 18k Molten Salt reactor is the first high thermal power nuclear reactor available KSPI-E, they excel in reliable long lifetime thermal power generation using Uranium. At the expanse of 50% power output it can burnup 99% of all uranium fuel. Besides Uranium it is also capable of using Thorium which generated more power but it durability is significantly lower. On the upside thorium is cheaper than Uranium and can be mined much more abundantly. Because its nuclear fuel is mixed constantly, gases like Xenon gas are not trapped but are extracted and can be used for other purposes. This reactor is also very suitable for Tritium breeding where lithium is converted into valuable Tritium. Another advantage is that the heat from the reactor can be transported effectively to other modules thanks to Molten Salt transport medium. Improved Nuclear Power High Nuclear Power Systems Pebble Bed reactors become available a bit later than Molter Salt reactor but thanks to their significantly lower mass they are the first nuclear reactor with can provide a Trust to Weight ratio higher as 1, meaning it can be used as first stage or second stage rocket engine. Although Pebble bed reactors are ideal for providing high thrust, when used for power generation, they suffer from heat throttling, meaning the reactor will automatically produce less heat output when heat is building up. Although reactor uses a transferable fuel source, due to is inefficient fuel usage, (most of the mass is not uranium), it is not efficient for long term power production Particle Bed Reactor aka TIMBERWIND is the continued development of the Pebblebed targeted for propulsion Efficient Nuclear Propulsion Experimental Nuclear Propulsion Exotic Nuclear Propulsion Closed Cycle Gas Core reactors excel in generating average amounts thrust combined with with significantly Higher Isp compared to it Nuclear counterparts. This makes them ideal for short range planetary missions to like Duna and Eve. The Closed Cycle Gas Core reactor is one of the few High Isp engine reactors which is capable of operating in an atmosphere. With the help of some boosters, it can be used to launch into orbit from Kerbin. Experimental Nuclear Propulsion Exotic Nuclear Propulsion Open Cycle Gas Core reactor excel a generating high amount of thermal power at double the core temperatures the Closed Cycle predecessor with less mass. This is achieved my removing the walls that separate the propellant and the nuclear fuel. Although this allows much higher core temperatures, the disadvantage is the reactor cannot operate while under the influence of acceleration, which happens when it is either on he surface or when accelerating at high speed. Exotic Nuclear Propulsion Min Diameter: 3.75m Dry mass: 16 ton Cost: 400k Fission Fragment Reactor (a.k.a. Dusty Plasma) improves over Particle Bed Reactor. When they first become available, they are less powerful as particle bed reactor, but it's the first reactor capable of generating charged particles. The generated charged particles are efficiently transported on your vessel using magnetic confinements and can be used for either Very High Isp propulsion in magnetic nozzle or directly converted into energy with Direct Conversion Power Generator. Fusion Power Advanced Fusion Exotic Fusion Unified Field Theory Min Diameter: 5m Dry mass: 16 ton Cost: 600k Magnetic Confinement Fusion Reactor (a.k.a Tokamak) is one of the first Fusion Power reactor and comes available with Fusion Power. This reactor is Big and Bulky and require a fixed amount of power to operate but it can be used wide variety of operations. The amount of power required depends on the type of fusion and the number of researched fusion technology. MCF is most suitable for fuel efficient, thermal efficient power production. One of the big advantage of Fusion is that it's fuel can be very cheap, relatively easy to store and has only low radioactive waste product. The Fusions product themselves can be directly converted into electric power, which allows it to be very energy efficient. Advanced Fusion Exotic Fusion Unified Field Theory Min Diameter: 3.75 Dry mass: 16 ton Cost: 800k The Stellerator Fusion Reactor is in essence a magnetic confininement Fusion Reactor with a significant higher efficiency at the cost of higher mass. This makes it most suitable power salilites in fixed orbit that need to maximise power output. Fusion Power Advanced Fusion Exotic Fusion Unified Field Theory Diameter: 2.5m Dry Mass: 8 ton Cost: 180k Magnetized Target Fusion Reactor can be smaller than the MCF reactor, but it is limited to providing thermal power. This makes it ideal for build SSTO vessels which require large amount of thermal heat to generate thrust when connected with any thermal nozzle. It can also be used for Electric Power production, but it requires a large amount of radiator to be effective. Fusion Rocketry Advanced Fusion Exotic Fusion Magneto Inertial Confinement Reactor is the first fusion engine specifically meant for Direct High efficient propulsion. It cannot be used for power and It's not as efficient as electric propulsion but it produces minimal amount of wasteheat, which will reduce the overall mass of the vessel. Note that the propellant is limited to Lithium , which is required both for achieving fusion as converting the fusion power in effective propulsion. Advanced Fusion Exotic Fusion Unified Field Theory Colliding Beam Fusion Reactor is the first reactor capable and specialized if the generation of Electric power from Aneutronic fusion reactions.The reactor has an integrated charged particle direct energy converter, which allows up to 85% of aneutronic fusion energy to be converted into Electric power. Since the direct energy converter efficiency don't depend on temperature, you can run the radiators a lot hotter, meaning you need a lot less radiators then other reactor which depend on thermal electric power conversion. This means it will be ideal when used with Electric propulsion engines and does not require any heavy thermal electric generators. The downside is the Engine cannot be used with either thermal or magnetic nozzles. Antimatter Initiated Microfusion (AIM) reactor can deliver more power in a smaller package but only runs on exotic antimatter, helium3 and enriched uranium. The engine can be connected to either thermal nozzles or magnetic nozzles. Antimatter reactors versatile , expensive, and incredible powerful, the only real problem is collecting significant amount of Antimatter. They produce up to 80% Charged Particles which can be used by magnetic nozzle to create a large amount thrust an high Isp Quantum Singularity Reactor is the ultimate Mass to Power converter technology. It uses a microscopically sized black hole to accelerate light atoms into charged particles and heat. The charged particles fuse resulting in heavier atoms, which can be used for other purposes. The black hole event horizon also creates small amount of antimatter which can be used by antimatter reactors. The amount of produced power is variable, but the amount of required power to sustain black hole is constant and it has a minimum power level at which the black hole can be kept alive. Reactor/Engine Technical details: Ractor Name Reactor Cost / Minimum Size (default 2.5m) Unlock Technology / Tech Ugrades Core Temp. (Kelvin) ISP (s) Max Power (GW) thrust thermal (kN) Empty Mass (t) Max Fuel mass (t) Build In Nozzle Base Power Req (MW) Thermal Propulsion Efficiency Thermal Power Efficiency Charged Power Efficiency Heat Trans Effic Min Utilisation Fuel transfer and Efficency Magnetic Nozzle Efficiency / ISP (s) Special Electric Power (KW) Tritium Breeding Nuclear Candle 5,000 0.625m Nuclear Propulsion Nuclear Power Improved Nuclear Propulsion 1730 2076 2491 873.66 0.0100 0.0150 0.0225 2.33 0.15 t 0.05 thermal 100% 0% 10% 100% no n.a. limited to 0.625m, No throtling, cannot be deactivated 50 no Microwave Thermal Reciever 10000 1.25m Advanced Solar 2268 1000s 20 4413 3 t n.a. none Requires Microwave beamed power 100% n.a. n.a. n.a. 0% efficiency depends on distance to tranmitter, and atmosphere density n.a. Requires connection with microwave tranmitter no no Nuclear Turbojet 15,000 1.25m Nuclear Propulsion Improved Nuclear Propulsion Efficient Nuclear Propulsion 1764 / 2000 / 2267 882 / 900s 1000s 0.400 0.600 0.900 102 / 136 / 171 6 t 0.03 thermal 100% n.a n.a 0.1% no no 50+50 no Nuclear Ramjet 30,000 1.25m Nuclear Propulsion Improved Nuclear Propulsion Efficient Nuclear Propulsion 1764 / 2000 / 2267 882 / 900s 1000s 0.600 0.900 1.350 102 / 136 / 171 8 t 0.03 thermal 100% 75% 80% 0.1% no no Build In Air intake 50 no Molten Salt 60,000 0.625m Nuclear power Improved Nuclear Power Nuclear Fuel Systems High Nuclear Power Systems 800K / 1008K / 1270K / 1600.0K 593s / 748s / 840s 0.444 0.666 1.000 1.500 147 / 174 / 206 8 t 6t UF6 none 100% 100% n.a. 95% 20.25% / 13.5% / 9% / 6% no no Fuel Recycling with Lab Integrated thermla generator yes Nuclear Sollid Core Engine 90,000 1.25m Nuclear Propulsion Improved Nuclear Propulsion Efficient Nuclear Propulsion 2000 / 2500 / 3000 939s 1050s 1150s 1.33 / 2.00 / 3.00 / 267.64 / 369.37 / 509.79 12 t 0.1 thermal 100% 75% 80% 0.1% no no requires 10 sec for full Throtle 80+80 no Pebble Bed 120,000 1.25m Nuclear Fuel Systems Improved Nuclear Power High Nuclear Power Systems 2000K / 2500K / 3000K 939s 1050s 1150s 1.33 / 2.00 / 3.00 267.64 / 369.37 / 509.79 8t Particle Bed 150,000 1.25m High Energy Nuclear Power Experimental Nuclear Propulsion Exotic Nuclear Propulsion 2500K / 2750K / 3000K 800s / 939s / 1111s 4.00 / 6.00 1020 / 1302 / 1823 12 t 1t pebbles none 100% 100% 75% n.a. 80% 4% pumped no Heat Throttling 50 no Magnetized Target Fusion OMEGA 180,000 1.25m Fusion Power Advanced Fusion Exotic Fusion Unified Field Theory 2500 1050 1.20 / 1.75 / 2.45 / 3.43 6 t Q20 / Q40 / Q60 / Q80 / 100% none 80% pumped Magneto Inertial Confinement Rocket 210,000 1.25m Fusion Rocketry Advanced Fusion Exotic Fusion Unified Field Theory 180.000 K 3770s / 5200s / 6500s 1.33 / 2.00 / 3.00 / 6 t thermal Q150 / Q200 / Q266 / 100% lithium only none none 0% 0% pumped 30% / 40% /53% 20% propellant limited to Lithium or Aluminum none 50% Colliding Beam Fusion Reactor 250,000 1.25m Advanced Fusion Exotic Fusion Unified Field Theory 1.33 / 2.0 / 3.00 6 t Q40 / Q80 / Q120 none 100% build in direct converter pumped no Aneutronic fusion only, +1 Fusion Tech level Nuclear Lightbulb 300,000 2.5m Efficient Nuclear Propulsion Experimental Nuclear Propulsion Exotic Nuclear Propulsion 7890 / 12562 / 20000 / 1865s / 2354s / 2970s 2.00 / 3.00 / 4.50 368.00 427.83 496.03 16 t 0.1t U235 thermal n.a. 100% 50% n.a. n.a. 2% pumped no Limited to non oxidizing propellants 50 + 50 no Open Cycle Gas Core 350,000 2.5m Experimental Nuclear Propulsion Exotic Nuclear Propulsion 25124 / 50247 3328s / 4707s 4.00 / 6.00 154.62 / 247.39 12 t 0.04 U none 100% 50% 90% 20% 1-100% depending on gravity no Buoyancy effects no Dusty Plasma Bed 400,000 3.75m Exotic Nuclear Propulsion 3700 1260s 3.00 16 t 0,065 none 60% 60% (2) 100% 80% 40% pumped 46% 52700 - 527000 none yes Nuclear Salt Water Rocket (*) 500,000 3.75m Exotic Nuclear Propulsion 5000s - 10000s 70.00 4200 - 2100 21 t thermal 100% none n.a. n.a 0% Water + UraniumTetraBromide no Cannot be used in Low or Hyperbolic orbit of Kerbin none yes Sperical Tokamak 600,000 5m Fusion Power Advanced Fusion Exotic Fusion Unified Field Theory 2500 1050 3.00 / 4.50 / 6.75 / 10.125 20 t 3t Li none Q10 / Q20 / Q40 / Q80 / n.a. 100% 100% 80% 0% pumped 100% 60% 15.000 - 1.500.000 Fuel recycling yes Tokamak Plasma Engine 700,000 3.75m Advanced Fusion Exotic Fusion Unified Field Theory 315.000 K Li: 6800s H2: 11800s -118000s 6.00 / 9.00 / 13.50 36 t 3t Li thermal Q24 / Q48 / Q96 / Lithium: 100% H2: %CP 100% 100% n.a. 0% pumped 100% 80% 3.75m yes Antimatter Initiated Microfusion 800,000 2.5m Antimatter Power Antimatter Power Unified Field Theory n.a. n.a 8.00 / 12.00 / 18.00 6 t none n.a. n.a. 100% n.a 0% pumped 13.500s - 61.000 80% Charged Particles no AntiMatter 1,000,000 0.625 Antimatter Power Ultra High Energy Physics Unified Field Theory 100000K 150000K 220000K 6641s / 8133s / 9850s 20.00 / 30.00 / 45.00 16 t none 100% 100% 100% 80% 0% pumped yes Total fuel Annihilation no VISTA Fusion Engine 1.500,000 5m Advanced Fusion Exotic Fusion Unified Field Theory n.a. 15500s - 27000 46.0 / 92.0 / 184.0 600 / 1200 / 2400 24 t magnetic Q45.6 / Q91.2 / Q182.4 n.a. none none n.a 0% pumped 15.500 - 27.200 Kills Nearby Kerbals no DAEDALUS IC Fusion Engine 3.000.000 5m Exotic Fusion Exotic Fusion n.a. 1.000.000s 1500.00 / 3000.00 300 / 600 72 t magnetic Quantum Singularity 6,000,000 5m Unified Field Theory Ultra High Energy Physics 320000K none 160.00 / 320.00 64 t none Q50 / Q100 none 100% 100% but for power onlyi n.a. 10% pumped Need zero environment to startup intergrated thermal and charge particle generator (1) requires Improved Nuclear Power (2) requires Fusion Power (3) requires Fusion Rocketry (*) Not implemented Explanation table: Fusion Reactor Fuel Modes Fuel Mode Reactors Types Tech Requirement Reactor Power Reaction Energy Reaction Rate Power Requirement Multiplier Neutral Plasma / Non Neutral Fuel Products Charged Particles Brems-strahlung Neutron Energy Ratio D-T Fusion MCF / MIF Fusion Power 1 1 1 1x LqdDeteurium + LqdTritium Helium4 19.3% 0.7% 80% Cold D-D Fusion MCF Fusion Power 0.3537 0.7074 0.5 0.9x LqdDeteurium Helium4 + Helium3 66.5% D-He3 Fusion MCF Advanced Fusion 0,884 1.04 0.85 2x / 4x LqdDeteurium + LqdHe3 Helium4 + LqdHydrogen 79.13% 15.87% 5% T-T Fusion MCF / MIF Advanced Fusion 0.5457 0.642 0.85 2x / 4x LqdTritium Helium4 17% 3% 80% Full D-D Fusion MCF / MIF Advanced Fusion 0.6135 1.227 0.5 2x / 4x LqdDeteurium Helium4 31.1% 10.7% 58.2% Hot D-D Fusion MCF Advanced Fusion 0.3635 0.727 0.5 6x / 9x LqdDeteurium Helium4 + LqdTritium 10% D-Li6 Fusion MCF / MIF Exotic Fusion 0.889 1.27 0.7 6x / 9x LqdDeteurium + Lithium6 Helium4 18.2% 81.8% 2.5% He3-Li6 Fusion MCF / CBF Exotic Fusion 0.672 0.96 0.7 6x / 9x LqdHe3 + Lithium6 Helium4 + LqdHydrogen 0.1% He3-He3 Fusion MCF / CBF Exotic Fusion 0.551 0.73 0.7 6x / 9x LqdHe3 Helium4 + LqdHydrogen 41.9% 58.1% 0% p-B11 Fusion CBF Exotic Fusion 0.3458 0.494 0.7 6x / 9x LqdHydrogen + Boron Helium4 + LqdHydrogen 36,3% 63.6% 0.01% Li6 Fusion Cycle CBF Unified Field Theory 0.5344 1.1875 0.45 8x Lithium6 Helium4 41.9% 58.1% 0.1% p-Li6 Fusion CBF Ultra High Energy Physics 0.154 0.22 0.6 10x LqdHydrogen + Lithium6 Helium4 + Helium3 41.9% 58.1% 0.1% p-Li7 Fusion MCF / CBF Ultra High Energy Physics 0.6839 0.977 0.6 10x LqdHydrogen + Lithium Helium4 75% 24.9% 0.1% p-N15 Fusion CBF Ultra High Energy Physics 0.1704 0.284 0.6 10x LqdHydrogen + Nitrogen15 Helium4 + Carbon 60% 40% 0.1% p-O18 fusion CBF Ultra High Energy Physics 0.1363 0.227 0.6 10x LqdHydrogen + Oxygen18 Nitrogen15 + Helium4 * MCF = magnetic confinement Fusion, MIF = Magnetic Inertial Fusion CBF = Coliding beam Fusion reactor ** = not implemented yet. This is an overview off all fuel modes and there effects on performance Non Fusion Reactor Fuel Modes This is an overview off all fuel modes and there effects on performance Reactor Fuel Modes Fuel Mode Type Reactors Tech Requirement Core Temp Modifier Reaction Energy Fuel Efficiency Fuel Products Charged Particles Brems-strahlung Neutron Energy Ratio Uranium Oxide Fission NERVA / JUMBO Nuclear Propulsion 100% 1 85% EnrichedUranium DepletedUranium ** 0 n.a 2% Uranium Hexafloride Fission Molten Salt / Gas Core Nuclear Power 100% 1 15% UF6 94% DepletedFuel + 6% Xenon 0 n.a 2% Uranium Fuel Cycle ** Fission Molten Salt Nuclear Fuel Systems 80% 0.8 80% UF6 80%DepletedFuel + 10%Plutonium 10%DepletedUranium 0 n.a 2% MOX Plutonium Burnup ** Fission Molten Salt Nuclear Fuel Systems 115% 0.9% 30% 7%Plutonium+ 93%Anticides DepletedFuel 0 n.a 1% Thorium Fission Molten Salt Nuclear Power 138% 1.38 15% ThoriumTetraflouride Anticides 0 n.a 2% Thorium Fuel Cycle ** Fission Molten Salt Nuclear Fuel Systems 69% 0.69 99% ThoriumTetraflouride + Anticides 96%DepletedFuel + 2%Anticides + 2%Plutonium 0 n.a 2% Uranium Nitride Pellet Fission Pebble Bed Nuclear Fuel Systems 100% n.a. 5% UraniumNitride DepletedFuel 0 n.a 2% Uranium Nitride Nanoparticle Fission Dusty Plasma High Energy Nuclear Power 100% n.a. 97% UraniumNitride DepletedFuel 83.5% * 0.46 n.a 2% Microfusion Fussion-Fision Hybid AIM Exotic Fusion Reactions 100% 1 94% LqdDeteurium + LqdHe3 & UraniumNitride + AntiMatter Helium4 + Hydrogen + DepletedFuel 95% n.a. 5% AntiMatter AntiMatter Antimatter Antimatter Power 100% 1 22% AntiMatter none 80% 20% n.a * MCF = magnetic confinement Fusion, MIF = Magnetic Inertial Fusion CBF = Coliding beam Fusion reactor ** = not implemented yet. Power Generators Generators are electricity production parts in the KSPI mod. Generators come in 2 different types and function differently. Generators in KSPI generate both electric charge and MegaJoules. Generators must be directly connected to a reactor to generate electricity and can only use power from one reactorGenerator at a time. Radiators are required by the Generator to expel WasteHeat and will not function without them. Thermal Generators - These generators convert thermal power from a reactor into electrical power and waste heat. Their efficiency determines what percentage of that thermal power is converted into electricity. The rest becomes waste heat. Typical thermal generators in space use closed cycleBrayton gas turbines. For traditional molten salt-based fission reactors, this type of generator gives a maximum theoretical efficiency of 31%. Upgrading the electric generators changes them from Brayton Cycle Turbines to a KTEC Solid State Generator heat engine with no moving parts - this ups the theoretical efficiency to 60%! Charged Particle Generators - This type of generator produces power directly from the use of charged particles which are created in great quantities by fusion reactors. Charged particle generators have much higher efficiencies than their thermal counterparts. These generators will produce varying amounts of power depending on the reactor and fuel modes used The Thermal Generator and Charged Particle generators can both be used at the same time on reactors that produce both charged particles and thermal power. This maximizes power potential and lower your utilization and therefore minimise WasteHeat production and reactor fuel consumption. Radiators Radiators are used in KSPI to expel excess WasteHeat from a vessel. WasteHeat is produced by reactors, generators, microwave receivers and will build up over time. Once WasteHeat builds up in a vessel to 95% capacity than reactors and microwave receivers will automatically power down. If WasteHeat is allowed to reach 100% then the parts may start being destroyed from too much heat. Non retractable solar panels are exempt from the WasteHeat mechanic. The Thermal Helper addon included with the KSPI installation can be used to estimate a reactor’s WasteHeat output. The values in the addon will dynamically update depending on the connected components. The Thermal helper is only accessible from the VAB/SPH. Radiators Name Unlocking Technology Foldable Mass Resize Scaling Factor Radiator Area Temperature Special Inline Radiator 3 Build in Reaction Reaction Wheel Small Flat Radiator Heat Management Systems no 2 1600 / 3500 Physics-less Foldable Heat Radiator Heat Management Systems yes 0.8 2.25 400 / 680 1600 / 3500 Contains Folding automation technology Large Flat Radiator Specialized Heat Management no 2 1600 / 3500 Can be used for landing stability Note the radiator performance depend for a large part on unlocked tech nodes:. Radiator Technologies Technology Science cost Effect Graphite Radiator Only Start Max temp 1850K no Heat Management Systems 160 Max temp 2200K no Advanced Headmanagment 550 Max temp 2616K no Specialised Radiators 1500 Max temp 3111K yes High Energy Science 2250 Max temp 3700K yes Nanoloathing 1000 60% improvement Emmisive constant yes Availability KSPI parts and upgrades with CTT technodes: Nuclear Power: small Molten Salt reactor Large Scale Nuclear Power: High Energy Nuclear Power: Advanced Nuclear Propulsion Meta Materials: All Radiators: Mo Li Heat Pipe ----> Graphene Radiaton Exotic Reactions: Tokama Fusion Reactor -> Upgraded Tokama Fusion Reactor Improved Nuclear Propulsion: Thermal Rocket Nozzles (all sizes) Thermal TurboJets (all sizes) Gas Core reactor and Dusty Plasma reactors and Molten Salt and Particle reactors----> Mk2 Molten Salt / Particle reactors Magnetic nozzles Thermal TurboJets ----> hybrid thermal rockets Experimental Electrics Electric Generator: Brayton Turbine → KTEC Thermoelectric/Direct Conversion (better efficiency) Heat Radiator: Mo Li Heat Pipe → Graphene Radiator (better efficiency Fusion Power Nuclear Reactor: Solid Core Reactor → Gas Core Reactor (3x power output) Thermal Turbojet: Atmospheric Thermal Jet → Hybrid Thermal Rocket (Basic version can only work in atmosphere, Upgraded version can toggle over to internal fuel) D-T Inertial Fusion Reactor → High-Q Inertial Fusion Reactor Ultra-High Energy Physics Antimatter Reactor: Solid/Liquid Core Reactor → Liquid/Plasma Core Reactor (3x power output) Plasma Thruster: Magnetoplasdynamic → Quantum Vacuum Plasma Thruster (uses no fuel) Antimatter Power Thermal Propellants Propellant Resouese Name Unlock Technology Chemical Thermal ISP multiplier EngineThrust Multiplier Thermal Decomposition Full Decomposition Energy Oxidising / Reducing / Inert Soot Effect Thermal / Electric Propellant Average Density ISRU Hydrogen LqdHydrogen Nuclear Propulsion H2 1 1 R -0.01 Both 0.07085 kg/l ++ Diborane Diborane Experimental Nuclear Propulsion B2H6 0.763 1 R -0.01 Gas core / Electric 0.421 kg/l -- Methane LqdMethane Efficient Nuclear Propulsion CH4 0.3503 - 0.78 1 - 1.6 1000K - 3200K 19.895 R 0.25 Both + +/- Hydrazine Hydrazine Exotic Nuclear Propulsion N2H4 0.744 1.4 R -0.01 Both ++ - Helium LqdHelium n.v.t He 0.7 1 I 0 Electric - + LiquidFuel LiquidFuel Nuclear Propulsion ? 0.65 1 R 0 * Both ++ -- Lithium Hydrate LithiumHydrate Experimental Nuclear Propulsion LiH2 0.65 1 R -0.01 Both 0.78 kg/l Ammonia LqdAmmonia Experimental Nuclear Propulsion NH3 0.63 1.4 R -0.01 Both 0.86 kg/l - Beryllium Hydride * BH 2 0.6 ? R Hydogen + Fluorine * LqdHydrogen + LqdFlorine Exotic Nuclear Propulsion H2 + F2 0.7 2.2 R 0 Thermal afterburner +/- - Hydrolox (Hydrogen + Oxygen) LqdHydrogen + LqdOxygen Improved Nuclear Propulsion H2 + 02 0.63 2 R -0.01 Thermal afterburner -- +/- Methalox (Methane + Oxygen) Efficient Nuclear Propulsion CH4 + 02 0.25 - 0.55 ? 1 - 2 1000K - 3200K ? 19.895 ? R 0.1 Thermal afterburner + + LOX (Liquid Fuel + Oxidizer) Improved Nuclear Propulsion 0.417 1 R 0 Thermal afterburner ++ ++ Water Exotic Nuclear Propulsion H2O 0.3333 - 0.4714 1.2071 2000K - 4200K 2.574 O -2.5 Both ++ + Kerosine Efficient Nuclear Propulsion 0.21888 - 0.42477 1.459 1000K - 3200K 12.305 R 0.4 Both + ++ Liquid Carbondioxide Experimental Nuclear Propulsion CO2 0.2132 - 0.4085 1.459 3200K - 7000K 12.305 O -2.5 - 0.33 Both +/- +/- Liquid CarbonMonoxide Efficient Nuclear Propulsion CO 0.3273 - ? ? 4000K - 10000K 6.1525 O 0.5 Both +/- - Liquid Nitrogen Efficient Nuclear Propulsion N2 0.3273 I -0.01 Both ++ +/- * Not implemented Electric Propellants Propellant Name Technology MPD / VASIMR / Arcjet RCS thermal Thrust Multiplier Isp Multiplier Ionisation Efficiency Density Kg/L Cost / L Cost / kg Sources Quantum Vacuum no no 1/1 1 8.8% n.a n.a n.a EM Drive LqdHydrogen yes yes 1/1 1 79% 0.07085 0.03675 0.5187 Gas-giant Atmosphere, Water Electrolysis LqdHelium Ion Propulsion yes yes 1/1 0.70966 44% 0.1786 0.0133 0.0745 Gas-giant Atmosphere, Fusion Ash Lithium Advanced Plasma Propulsion yes no 1 0.57735 86% 0.534 0.27 0.5056 Salt Water, Silicates NeonGas Ion Propulsion yes yes 1 0.447 50% Trace Gas Atmosphere Methane yes yes 2.2 0.3535 0.42561 0.45 1.0573 Trace Gas Atmosphere HTP yes yes 1.4 0.2425 Hydrazine Advanced Plasma Propulsion yes yes 1.806 0.2425 Monopropellant 0.2425 KryptonGas Ion Propulsion yes yes 1 77% Caesium Advanced Plasma Propulsion yes no 1 92% 1.93 77 40 XenonGas Ion Propulsion yes yes 1 0.1234 89% 1 40 40 RCS systems: From left to right: Corner ResistoJet RCS, 5 way ResistoJet RCS , Retractable 5 way Resitojet RCS , Retractable 5 way Resitojet RCS (Curved), Linear Arjcet RCS, Arcjet RCS Tank Engines: Interstellar offers 11 different type of engines, each with their own advantages and disadvantages. Thermal Nozzle is the first engine available. They directly use the thermal heat generated by the reactor to heat-up propellant. The Advantage is that this is very efficient, as minimum amount of power is lost, and many propellants can be used. The disadvantage is that Isp, which is lower than other form of propulsion, it dependent and the core temperature of the reactor and used propellant. On the plus side many propellants can be used and thermal nozzles benefits for the energy released by decomposition when propellant are subjected to high temperature. This means propellant like Ammonia and Hydrazine give a significant bonus to thrust and Isp. Although it offers you you to use many resources as an propellant, it might be wise to avoid propellant that contain carbon, as they tend to to produce clog the heat eachanges with soot, which lowers your maximum thrust and causing overheating. For optimal efficiency, connect a thermal nozzle directly to an reactor, but if desired you can put other parts between the thermal nozzle and reactor at the cost of lower efficiency. Thermal Turbojet becomes available at the same time as thermal nozzle. Their advantage is that they allow high amount of propulsion, without any propellant, that is they use the air as an propellant. This means you can save a lot of mass on propellant. The downside is that it only function inside an atmosphere, on the plus side, this includes any atmosphere, even those without any oxygen. Do note that in order to travel fast though the atmosphere, you need precoolers to cool the compressed air to a temperature that prevent the turbojet from overheating. Arcjet are the first electric engines offered by Interstellar. Instead of thermal heat, they use electric power to heat a propellant to high temperature. The advantage is that you can use any non oxidizing propellants and enjoy the same decomposition propulsion bonus. One of the big disadvantage is that electric propulsion is less efficient as a lot of power is lost by converting the power into electric power and then convert into heat again. This is compensated by its ability control it's trust at the cost of Isp and the ability to use multiple reactors to power the same set of engines. Arjcets can be connected any where on you vessel, just make sure it is fed with desired propellant, and the reactor has access to radiator to lose its waste heat. [TABLE=class: grid, width: 1600] Engines Type Technology Method ISP (LqdHydrogen) Efficiency Variable ISP Gimbal manouverability Functions in Atmosphere Functions in Vacuum Propellant Electric Power Need Jet Engine Special Thermal Thrust Bonus Wasteheat effect Operating Cost Nuclear Turbojet Nuclear Propulsion Thermal 203s 2000s 125% no very high full no Atmospheric Air none Turbojet build in precooler & build in reactor no Consumes very low Nuclear Ramjet Nuclear Propulsion Thermal 203s 2000s 125% no high full no Atmospheric Air none Ramjet build in precooler and air intake no Consumes very low Thermal Launch Nozzle Improved Nuclear Propulsion Thermal up to 3000s 100% no high yes yes any NTR propellant + Oxygen as afterburner none Can overheat when clogged full Consumes low Thermal Ramjet Nozzle Improved Nuclear Propulsion Thermal up to 3000s 100% no average yes in atmospheric mode yes Atmospheric Air or any NTR propellant none Ramjet Can overheat when clogged full Consumes low Thermal Turbojet Improved Nuclear Propulsion Thermal up to 3000s 100% no high partial with propellant thermal, full in jet mode yes Atmospheric Air or NTR propellant none Turbojet Can overheat when clogged full Consumes very low Nuclear Light Bulb Efficient Nuclear Propulsion Thermal 1850s - 2970s 100% no high partial any NTR propellant none full low Plasma Nozzle Plasma Propulsion Thermal 3000s - 12000s 100% yes (*) low partial mono atomic propellants yes (*) Low low 5 way Resistojet RCS Ion Propulsion Thermal 272s (cold) / 544s (heated) 80% partial RCS yes yes Any propellant partial Cannot use oxidizing propellants full High low VTOL Resistojet (*) Ion Propulsion Thermal 1000s 80% no high yes yes Any propellant yes Cannot use oxidizing propellants full Low average Linear Arcjet RCS Advanced Ion Propulsion Thermal 272s (cold) / 2000s (heated) 52% no RCS partial yes Any propellant partial Cannot use oxidizing propellants full High average ATILLA Advanced Ion Propulsion Magnetic/ Thermal 2854s - 5704s (*) 50-80% yes average partial yes Any propellant yes Cannot use oxidizing propellants partial Average average MPD Plasma Propulsion Magnetic 11213s ionisation efficency no average partial yes Any propellant yes Efficency depend on propellant no Average average VASMIR Advanced Electromagnetic Systems Magnetic / Thermal 2956s - 29,969s 30-60% yes low no yes mono atomic propellants yes Efficency depend on Isp and Atmospheric Density no High average EM drive Specialized Plasma Generation Quantum Vacuum > 10.0000.000 10% no low yes yes vacuum plasma from nothing yes reactionless propulsion no Very High low Magnetic Nozzle Advanced Plasma Propulsion Charged Particles/ Magnetic 12.000 - 1.200.000 100% yes none no yes LqdHydrogen + Charged Particles low, 1% charged power Requires charged particles no Consumes average VISTA Fusion Rocketry Fusion 15.500 - 27.200 > 10000% limited low no yes LqdHydrogen + LqdDeuterium + LqdTritium up to 2.5 GW Deadly radiation and Safety Features n.a. Extreme very high DEADALUS Advanced Fusion Fusion 1.000.000 > 10000% none none no yes LqdDeuterium + LqdHelium3 up to 5 GW Aneutronic n.a. high extreme (*) not yet implemented Type - This field describes the technology behind the engine. The technologies used in KSPI are based closely on real life engines or scientific theories. Note the distinction between Thermal and Magnetic. Thermal engines have limited Isp but benefit from thermal decomposition, giving it extra thrust and improved Isp. Magnetic engines first need to Ionize the propellant. Some engines like the Vasimr and Atilla engine use a combination of the 2 techniques. Method- This describes the engine's power input used to generate thrust. Engines can use Thermal (GW) power from a reactor, magnetic types use charged particles, quantum vacuum uses the vacuum of space to produce thrust and Fusion uses an internal fusion reaction to produce thrust. ISP (LqdHydrogen)- This section shows the ISP (fuel efficiency) an engine produces when using LqdHydrogen as the propellant. Different types of propellants can provide different thrust values in an engine which is covered in more detail the Propellants section. Efficiency - The efficiency of an engine is how much of the thermal power (GW) is used to produce thrust and the remainder is expunged as Waste Heat. A low efficiency engine may require additional radiators to radiate the heat into the surrounding environment. The efficiency of electric engines is highly dependant on the efficiency of the propellant used. Variable ISP - In KSPI some engines can have a variable ISP when operating. The ISP of an engine decreases as it produces more thrust. Higher thrust values also decrease the energy conversion efficiency. Gimbal - This describes if the engine has gimbal capability. Gimbaled engines can use thrust vectoring to control the attitude of a vessel. Note that RCS engines do not gimbal but are linked with KSP RCS system. Functions in Atmosphere - This is another self-describing value which explains if the engine can produce thrust when in an Atmosphere. Some engines rely on the vacuum of space or other methods to produce thrust and cannot be used in an Atmospheric environment. Many of the thrusters in KSPI are affected by static pressure. Which means the engine has to overcome the pressure of the atmosphere before producing usable thrust. Static pressure can be overcome by using a higher thrust propellant or by using a smaller nozzle. Propellant- The propellant section explains which propellants are compatible with a given engine. Note that some engines can be upgraded to allow for additional propellants than is initially unlocked. Electric Power Need - This section explains if Electrical Power (measured in MegaJoules) is required for the engine to operate. Engines can require partial or full electric power, as well as mixed types that also use charged particles. Some engines like the RistoJet RCS, will switch to unpowered mode when insufficient power is available. These engines can therefore be used without KSPI reactors. Special- The special column covers any extra information about an engine that does not fit into a specific category on the chart. Thermal Thrust Bonus - This describes an engines ability to produce extra thrust depending on the propellant used. The temperature of the thermal engine also plays a factor on the thermal thrust bonus when factoring in thermal decomposition of a fuel. (More below in the Propellants section) WasteHeat effect- This explains how much Waste Heat is generated when firing a particular engine. Engines can both consume WasteHeat as well as produce WasteHeat depending on the engine technology used. Operating cost - This gives a general overview of the operating cost of running a engine. Electric engines are more expensive than thermal engines, since thermal engines have require less radiators. Vista Engines are very expensive to operate due to their high rate of consumption of Tritium. Warpdrive (Faster Than warp drive) Raw Resource Procesed Resource Borate 15% Boron 70% Oxygen Silicates 20% Silicon 6% Lithium Hydrates 25% Water 5% CO2 Nitratine 27% Sodium 16 Nitrogen 56% Oxygen Salt 10.8% Sodium 1% Lithium Monozite Cesium Thorium Spodumene Lithium Aluminium Fast than light speed is only possible by folding space itself. Space in front of the vessel needs to be shrunken while space behind it the vessel is extracted. To shrink and expand space, you need to generate negative mass which can be achieved by exciting exotic matter. KSPI warp drive can generate exotic matter and use it to create a warp field. The amount of power required to create a stable warp fields depends on the speed and power of the warp coils. The speed of light itself requires the least amount energy. Traveling faster or slower requires more power. However speed is influenced by a large degree by the curvature of space, in other words, gravity. It means that the higher the gravity pull of any heavily body, the lower the maximum speed possible for a finite amount of power requirement. This effectively means that when a vessel is in a low Kerbin orbit, where the pull of gravity is significant, the maximum warp speed is very low. And since traveling slower than the speed of light requires more power, it means that it will be hard or impossible to generate enough power. To get around it, you need to bring your vessel further away from the gravity source or install more warp drive power. Warp Power is achieved by any of the 3 warpdrives in KSP, The Light Warp Engine, the Foldable Warp Engine and the Heavy Warp Engine. The amount of warp power is directly dependent on the mass of the warp drive. Warp drives also stack linear, which means it will not matter if you use 24 ton of light warp drives or a single large warp drive. Warp navigation: