Jump to content

Analyzing General Magnetized Target Fusion


Spacescifi

Recommended Posts

 

 

So for those that don't already know general magnetized fusion is fusion method that can be done in pulses with off the shelf available technology we understand (pistons, plasma, magnetic fields, liquid metal etc).

 

Yet I found though the video shares a hopeful outlook, there are challenges.

 

Yet I still like the idea a lot. Not sure if it will live up to the hype though since wikipedia says:

 

MTF is not the first "new approach" to fusion power. When ICF was introduced in the 1960s, it was a radical new approach that was expected[by whom?] to produce practical fusion devices by the 1980s. Other approaches have encountered unexpected problems that greatly increased the difficulty of producing output power. With MCF, it was unexpected instabilities in plasmas as density or temperature was increased. With ICF, it was unexpected losses of energy and difficulties "smoothing" the beams. These have been partially addressed in large modern machines, but only at great expense.

In a general sense, MTF's challenges appear to be similar to those of ICF. To produce power effectively, the density must be increased to a working level and then held there long enough for most of the fuel mass to undergo fusion. This is occurring while the foil liner is being driven inwards. Mixing of the metal with the fusion fuel would "quench" the reaction (a problem that occurs in MCF systems when plasma touches the vessel wall). Similarly, the collapse must be fairly symmetrical to avoid "hot spots" that could destabilize the plasma while it burns.

Problems in commercial development are similar to those for any of the existing fusion reactor designs. The need to form high-strength magnetic fields at the focus of the machine is at odds with the need to extract the heat from the interior, making the physical arrangement of the reactor a challenge. Further, the fusion process emits large numbers of neutrons (in common reactions at least) that lead to neutron embrittlement that degrades the strength of the support structures and conductivity of metal wiring. In typical MCF schemes, neutrons are intended to be captured in a lithium shell to generate more tritium to feed in as fuel, further complicating the overall arrangement. Deuterium-deuterium fusion would, of course, avoid this requirement.

 

 

Kopek problemEdit

Another concern for the MTF concept is known as the "kopek problem". The kopek is the currency unit similar to the penny, with 100 kopeks to the ruble. At an exchange rate of 5,000 rubles to the US dollar, a kopek is not worth much. The name is intended to allude to a tiny value of money.[10]

The problem is that the metal liners used in MTF are consumed during the reaction. In return, the device would generate electricity. However, the value of that electricity is very low, on the order of a few pennies. Thus, in order to generate net positive cash flow, the device has to generate enormous amounts of energy per shot, unrealistically high amounts, or the cost of the fuel assemblies must be tiny, about a kopek.[11]

Two potential solutions to the kopek problem have been identified; the use of "hotspot ignition" (also explored in traditional ICF) appears to allow a great increase in energy release compared to energy input, thus addressing the problem from the gain side. The other is to attempt to recycle some of the components, or in the case of fluid-wall systems, not lose any material in the first place.[11]

What do you think?

Edited by Spacescifi
Link to comment
Share on other sites

This thread is quite old. Please consider starting a new thread rather than reviving this one.

Join the conversation

You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.

Guest
Reply to this topic...

×   Pasted as rich text.   Paste as plain text instead

  Only 75 emoji are allowed.

×   Your link has been automatically embedded.   Display as a link instead

×   Your previous content has been restored.   Clear editor

×   You cannot paste images directly. Upload or insert images from URL.

×
×
  • Create New...