Hydrogen peroxide also exothermically decomposes in the tank (which is catalyzed by many, many things). And, of course, as it warms, it decomposes faster, which heats it further, which accelerates decomposition, repeat until explosion. The classic book Ignition! references this as why, e.g. white fuming nitric acid was less of a problem; it decomposes, but not exothermically (so it doesn't self-accelerate). It also notes that fire experiments showed that nitric acid + UDMH isn't much of a problem, because they're so reactive that spills in quantity can't mix and then explode, they just flare momentarily and fly apart. On the other hand, H2O2 + jet fuel + spark equals a fuel-air bomb as the fire vaporizes the fuel and the peroxide and oxygen mix with it before detonating.For a tactical missile, you want storable propellant that's usable in a wide range of temperatures, which in the late 50s came to mean IRFNA + UDMH. For an ICBM that lives in a steam-heated hole, N2O4 that would be frozen in a severe winter offers better performance. But you can't use cryogenic propellants, and you especially can't use hydrogen that will jolly well leak through the tank walls. The US and USSR grudgingly accepted ballistic missiles that needed to be fueled right before launch, but only for the first (Atlas/Redstone/R-7) types. Nobody is going to stand around a battlefield pouring (toxic, corrosive, explosive) propellant into a rocket. And nobody wants the ICBMs to be warned that there's an incoming strike, but it'll be an hour before they're fueled to shoot back. So practical missiles needed storable propellants (although ICBMs didn't need a low freezing point). The really early stuff had the worst of both worlds, propellants that were awful to handle and ate the tanks so you couldn't store them in the rocket. And then, as nuclear warheads got lighter and solid rockets got better, missiles pretty much all switched over. Yes, liquids have higher performance, but solids are more reliable. If you need more oomph, use a bigger rocket. On the other hand, space launchers care very much about the performance (and frequently want to throttle the rocket), don't want to deal with really nasty chemicals, and don't really give a damn whether their propellant is cryogenic. Thus, hydrocarbons or liquid hydrogen burned with liquid oxygen. Until you get to thrusters in space, which again have to switch back to storable propellants, and hypergolic combinations like UDMH and nitric acid/N2O4 also make the rocket design a lot simpler and more reliable. The really exotic stuff, like fluorine and boron compounds, are just never going to make it. Yes, higher performance, but the military doesn't care (or want to deal with the handling problems) and if the space agencies were willing to deal with hydrogen fluoride everywhere, why not switch to a nuclear rocket? Higher performance, less hassle. Otherwise, LOX and RP-1 are cheap, just build a bigger rocket.