Search the Community
Showing results for tags 'orbital insertion'.
-
So I was watching this car jump from Minmus and noticed that a pass in front of the Mun tightened the resulting orbit considerably. Then I send my Iktomi explorer to Duna, and managed to pass in front of Ike, or rather, I crossed Ike's orbit just ahead of it. The insertion resulted in a wildly elliptical orbit, but it only cost me about 280 m/s. Then I take a look at what I can do out at the new apoapsis, and found that passing in front of Ike again would tighten the resulting orbit a lot, with the new apoapsis matching Ike's altitude, and only for a cost of 5 to 10 m/s. I imagine I could then tighten the orbit further for only a few m/s more at Duna periapsis, but didn't get a chance to investigate that yet. I want to understand what I'm seeing. I've read about and watched a lot of gravity assist examples on YouTube, but that car jump video had a very clear and beneficial example that I was then able to replicate. I remember that the assists are really directional changes at the body you're doing the assist at, but the new direction would instead represent some delta-v difference relevant to the parent body. But I'm wondering if a comparably simple rule would help me, something like, "pass ahead of a moon to slow down, pass behind it to speed up." At least in the two dimensions the typical orbital plane is in. --