Jump to content

Silavite

Members
  • Posts

    212
  • Joined

  • Last visited

Reputation

346 Excellent

1 Follower

Profile Information

  • About me
    Mass, Momentum, and Energy Conservation
  • Location
    College Station, TX

Recent Profile Visitors

The recent visitors block is disabled and is not being shown to other users.

  1. Desmos can do piecewise functions with the following format: f(x) = {condition : output, condition : output, condition : output, etc...} From the description, I believe that this is what you're looking for: https://www.desmos.com/calculator/n0rx0hi3nj
  2. This is getting a little beyond the scope of the topic, but since we're on a materials science tangent, I may as well add one more detail. The statement that 301 (or, more generally, 300 series austenitic stainless steels) are nonmagnetic is only true for the material that is in the as-cast or annealed form. Cold working can cause austenite to transition to martensite, which is magnetic.
  3. Is it just me, or does the vertical stabilizer on Boom's redesign look really undersized? I'm wondering how lateral stability (particularly CN,β) is achieved...
  4. AIAA has a huge job board: https://careercenter.aiaa.org/ AIAA also has networking events and local chapters. Aerospace (though more on the "space" side) job board: https://rocketcrew.space/ For a fun twist, here's the scoreboard for the LA Aerospace Games this year. (With a list of companies/organizations attending.) https://www.facebook.com/photo?fbid=10222010097137180&set=gm.10160034282721100 I'm in the same boat (T-1 year to graduation) so I can relate to your search.
  5. Using a company wide email to distribute something like this without approval definitely sounds like a bad idea. I don't know if that alone is justification to fire these employees, but they definitely screwed up. I think that the main tension here is the fact that there is not a bright line between Elon's personal statements and SpaceX's official statements. Elon's Tweets are often official statements on SpaceX's doings. Sometimes this is really cool (such as when we get to see glimpses of technical details or decisions through his Tweets), but other times this doesn't work out so well. If any other employee said some of the things Elon regularly posts on his Twitter through an official channel, then they would be fired on the spot. In my opinion, reserving the SpaceX Twitter for official statements while letting Elon do whatever he wants (but making it explicitly clear that none of the Tweets from his account are official company statements) would be the best solution. Let Elon be Elon (even if plenty of folks may disagree with him), but let SpaceX be SpaceX. That's my $0.02, at any rate.
  6. That said, the, "send a few," part of this has been done before. Viking 1/2, Pioneer 10/11, Voyager 1/2, Spirit/Opportunity were all probes which were launched in pairs. Going beyond 2 would increase margins, however.
  7. Most of the issues during summer in Florida are due to lightning criteria violations. NASA-STD-4010 has more details on the specific criteria for those who are curious. Anyway, the lightning during that period is mostly caused by sea breeze thunderstorms, which means that lightning almost always occurs during the afternoon and evening hours, so it's something that can be accommodated for. (Though it could make delays on day-of-launch more dicey... I assume a daylight launch is desired, so the earliest window would be about 7 AM. Delay for 4 hours or more and the chances of nasty weather rolling in shoot up.)
  8. If you had to pick one equation as fundamental for a given field, which would you pick and why? For example, I think that it would be reasonable to say that F = ma is the fundamental equation for dynamics and ΣF = 0 is the fundamental equation for statics. The field can be as broad or as specific as is desired. Families of equations (such as the Navier-Stokes equations for fluid mechanics) are acceptable but discouraged.
  9. To clarify this point about minimizing cooling, it is specifically film/dump cooling that should be minimized. Film cooling acts to prevent heat transfer to the chamber walls by injecting a layer of (usually) fuel around the chamber periphery. This creates a region of very rich, off-nominal mixture ratio fluid near the wall that does not burn and serves to protect the chamber wall from the extremely hot "core" combustion. This has a negative effect on performance because you're intentionally creating an area of maldistributed (from a combustion efficiency perspective) fuel which does not completely burn. This paper partially discusses the deleterious effects of film cooling and how designers might try to use less of it. I'm unsure about exactly what effects ablative cooling have on performance. The only things I can say with much certainty are that the engine's thrust will increase (due to the increased mass flow rate from the increase in throat diameter as the throat material ablates away), and that the engine's vacuum exhaust velocity will decrease (as a consequence of decreased expansion ratio, which is in turn a consequence of increasing throat diameter). Regenerative cooling of the combustion chamber has basically no effect on performance. The energy lost through the chamber liner into the coolant ends up going back into the chamber as somewhat-warmer-than-ambient propellant (indeed, expander cycle engines take this concept to the extreme), so very little heat actually escapes the engine system in regenerative cooling. Regenerative cooling of the supersonic flow in the nozzle extension can actually have a positive effect on performance (due to the decrease in entropy), though the effect is quite small (on the order of 10 m/s exhaust velocity) for all but the highest of expansion ratios. See here for more reading about the effects of regenerative cooling on performance.
  10. Apologies for the slight derailment, but what is meant by the term, "PD design tools?" Google is not helpful here and I assume you're not talking about proportional-derivative controllers or physical design in the electronic context. Are they things like Roskam Class 1 / Class 2 methods?
  11. The reason that the launch mount is high up is so a flame trench/diverter isn't necessary. A flame trench exists to prevent the exhaust from physically damaging the launch site (and by extension protect the rocket from debris kicked up by the exhaust), whereas a water deluge system exists to damp the sound of the rocket launch.
  12. Sort of related, I found a paper written by this company's current chief designer (Igor N. Nikischenko, who formerly worked as the Deputy Chief Designer in the Liquid Propulsion Department at Yuzhnoye in Ukraine) a few years back. It talks about the rationale for using LOX as a regenerative coolant and also discusses some novel combustion cycles. It looks as though the RD-58MF also uses LOX as a regenerative coolant if what this paper says is true. In hindsight, the big advantages to using LOX over RP-1 for cooling are clear: LOX mass flow rate is much higher than RP-1 mass flow rate and you also get the benefit of latent heat release from LOX (whereas RP-1 must be kept cool enough to prevent formation of waxes in the cooling channels). The whole paper is fascinating and really worth a read. (Maybe semi-expander semi-gas-generator cycles will be the trendy new thing for upper stage engines, eh?)
  13. Also... one other thought. There was a lot of talk about simplifying operations, but Neutron is planning to balloon tanks in its upper stage (which are not exactly easy to handle). Admittedly having the launch site right next to the production facility should simplify operations in regards to using such a structure (no transportation), but I'm still wondering if they have any other special procedures for working with balloon tanks.
×
×
  • Create New...