-
Posts
1,258 -
Joined
-
Last visited
Content Type
Profiles
Forums
Developer Articles
KSP2 Release Notes
Everything posted by Pipcard
-
2039-03-09 - First module of the Ame-no-Uzume Venus Transport Vehicle (~800 t) (RSS/RO) 2039-05-16 - The complete Venus Transport Vehicle (2420 t), with Misora Kaneko, Asuka Tanoue, and Kasumi Aimoto on board.
-
2039-03-09 - An H-Z 222L launched the first module of the Ame-no-Uzume Venus Transport Vehicle, the Venus Orbit Stage (6x LE-7-R engines) and Earth Return Stage (3x LE-7-R, 3x LE-5B-3). At 800 tonnes, they were larger than the Kagutsuchi Mars mission stages because of Venus's deeper gravity well. Like its predecessor probe, Akatsuki, the public relations campaign involved engraving some of the metallic portions of the spacecraft with thousands of names from the public and images of a certain virtual singer. 2039-03-31 - Another H-Z 222L launched the first of two Earth Departure Stages (8x LE-7-R), identical to the one launched for the Venus balloon habitat and ascent vehicle, docking to the rear of the VOS/ERS almost two and a half days later. Total mass: 1570 t. 2039-04-22 - As a duplicate of the previous launch, the second Earth Departure Stage appended itself to the end of the VTV. Total mass: 2350 t. 2039-05-14 - An H-Z 102S launched the crew of three on the Earth Arrival Vehicle, on top of the VTV's habitation module. These astronauts were Misora Kaneko, Asuka Tanoue, and Kasumi Aimoto. After transposition and docking, the EAV used its LE-5B-3 engine and small RCS thrusters to rendezvous and dock with the Venus Transport Vehicle. A saddle truss was located between the hab and the Earth Return Stage, to serve as a docking point for the Venus Ascent Vehicle once it had returned to orbit. The total mass of the VTV once assembled was 2420 tonnes, 40 percent heavier than the Kagutsuchi Mars Transport Vehicle.
-
2038-04-06 - The Ame-no-Uzume balloon habitat/ascent vehicle enters a 300 km orbit above Venus
-
2037-10-24 - The eight LE-7-R engines of the Earth Departure Stage ignited, pushing the Ame-no-Uzume balloon habitat and ascent vehicle towards Venus, which it would reach in just over 5 months. 2038-03-26 - The three Kodama-X relay satellites arrived at Venus simultaneously, executing their maneuvers within minutes of each other* to enter a high elliptical orbit (with a period of about 20 days). As Venus spins clockwise instead of counter-clockwise like most planets, so did the satellites' orbits. Afterwards, they would make plane changes then finally enter a 24-hour circular equatorial orbit (33400 km) on 2038-04-18. * This was made possible in KSP by the Physics Range Extender mod, which can prevent craft from unloading even if they are hundreds of kilometers apart. Also, plotting an encounter that required the periapsis (low point in the orbit) to be at the same time as the point where the orbit crosses the equator required me to use HyperEdit to place a temporary "dummy" satellite in an equatorial orbit for the purpose of better targeting. 2038-04-02 - The Venus Orbit Stage of the Ame-no-Uzume balloon habitat performed its multi-phase orbital insertion: first to an elliptical orbit, then a plane change, then finally to a 300 km equatorial orbit on 2038-04-06. The transfer stage was almost identical to the Kagutsuchi Mars Orbit Stage, with its three LE-7-R main engines and three auxiliary LE-5 engines. The vehicle would wait in orbit for about one and a half years for the crew to arrive in the Venus Transport Vehicle. The equatorial orbit would ensure that the ascent vehicle could return to rendezvous with the transport vehicle at any time. 2038-04-06 - Final orbit insertion
-
Ame-no-Uzume - Japanese Venus Balloon Mission (RSS/RO) 2037-10-19 - Ame-no-Uzume Venus Habitat/Ascent Vehicle with transfer stages | mass: 1180 t
-
The Ame-no-Uzume Venus Mission was named after the Japanese goddess associated with dawn and merriment, as a successor to the Akatsuki ("Dawn") Venus orbiter mission. It would involve a total of 6 (2 + 4) launches. In 2037, the Venus Habitat Module and Venus Ascent Vehicle would depart Earth to enter a 300 km orbit around their destination. The crew would launch in 2039 and ride on the Venus Transport Vehicle. Several transfer stages, heavier and longer compared to their Mars-bound predecessors, would be launched by the H-Z 222L. The crew would then transfer from the VTV to the VHM/VAV, which would deploy an inflatable heat shield and enter the atmosphere of Venus, releasing parachutes and a large balloon* that would allow the vehicle to float over 50 km above the extreme conditions on the surface. Two astronauts would enter the Venusian atmosphere while one would stay in orbit. After about 30 days, the two-stage VAV would drop from the VHM and launch back to orbit, meeting up with the VTV. Once returning to Earth in 2040, Earth Arrival Vehicle would then slow down to reduce G-forces upon re-entry. * from KerBalloons with modified configs 2037-09-25 - The first launch (H-Z 204L) carried the Venus Habitat/Ascent Vehicle with the Venus Orbit Stage (3x LE-7-R, 3x LE-5B-3), which had a mass of over 400 tonnes and entered a 400 km parking orbit. The VAV had a Raptor engine on the first stage, with 3x methane RL10s on the second stage. The solar arrays were slightly smaller than the Mars mission due to Venus being closer to the Sun; however, the Venus Transfer Vehicle (2039-2040) would need to go as far as the orbit of Mars during the return trip. 2037-10-16 - A Zeta rocket launched from Uchinoura Space Center with three Kodama-X Data Relay and Tracking Satellites to Venus. 2037-10-19 - An H-Z 222L launched the Earth Departure Stage (8x LE-7-R) for the Ame-no-Uzume Venus Habitat/Ascent Vehicle, docking just a few hours later. The total mass of the stack was about 1180 t.
-
[1.12.*] KerBalloons Reinflated - Real Science?
Pipcard replied to linuxgurugamer's topic in KSP1 Mod Releases
I got the balloon to work in Realism Overhaul by making a .cfg patch file (with its own folder in GameData) with the following text: (note: this does not make the part realistic in terms of mass, etc.) Patch link: https://www.dropbox.com/s/3tu7qmjk4o48wek/KerBalloons_RO.zip?dl=0 -
Video of the Kagutsuchi mission: 2035-05-01 - After 1.5 years of exploring Mars and its moons (a "conjunction class" or long-stay mission), it was finally time for the crew of Kagutsuchi to return to Earth. The Mars Transfer Vehicle jettisoned its Mars Orbit Stage, leaving the Earth Return Stage (which was identical to the transfer stage of the Mars Habitation Module, with its 1 LE-7-R and 2 LE-5B-3 engines). The MTV's orbit being aligned with Phobos, but it was misaligned for a return to Earth. To correct this, it would perform the Trans-Earth Injection in several phases, essentially a reverse of the maneuvers completed at Mars arrival (first burn, inclination change, then second burn). The orbital inclination was shifted by over 40 degrees at the apoapsis [the required inclination for transfer calculated with the help of KSPTOT]. 6 and a half months later, the MTV arrived home. The MAV undocked to redirect itself, leaving the rest of the MTV to fly past Earth as close as 250 km. The MAV's capsule separated, re-entered and splashed down in the middle of the Pacific Ocean. 2035-05-03 - Second phase of the Trans-Earth Injection burn 2035-11-19 - Return to Earth
-
[JAXA+] 2035-11-19 - The Kagutsuchi Mars mission returns to Earth
-
totm oct 2023 Post Your Cinematics Here! (Cinematic Enthusiasts)
Pipcard replied to Halban's topic in KSP Fan Works
JAXA+ | Japanese Crewed Mars Mission "Kagutsuchi" (2030-2035) -
[JAXA+] 2035-04-10 - The Kagutsuchi Mars Transfer Vehicle lands on Phobos and Deimos (three days later)
-
2035-04-10 - After refueling and a week of rest at the Mars Transport Vehicle, the Kagutsuchi crew undocked once again to travel to the two moons of Mars, Phobos and Deimos. The MAV performed a series of Hohmann transfer burns to intercept and match velocities with the targets. Landing on Phobos occurred about 8 hours later. The Martian moons were very small compared to their parent planet, being similar to carbonaceous asteroids. Due to its low density, Phobos was also considered to be a collection of rocks loosely held together by gravity. Their escape velocities were about 10 m/s or less, requiring careful and gentle engine burns. The RL10 CECE methalox variant could throttle down to 25% of full thrust, and with half of the engines disabled, the effective throttling could be as low as 12.5%. On the surface, walking felt more like floating, and taking a single step could take an astronaut dozens of meters away. The crew only stayed on Phobos for two days due to the solar arrays not getting enough exposure to the Sun, as it was often occluded by Phobos and Mars. They lifted off straight from the surface, escaping from the moon's tiny gravitational pull very easily, and headed for Deimos (half the size of Phobos), where they landed on April 13 and stayed for only one day. The MAV returned to low Mars orbit and docked with the MTV on April 15.
-
[JAXA+] 2035-04-02 - After 1.4 years, the Kagutsuchi Mars Ascent Vehicle launches back to orbit and docks with the Mars Transport Vehicle, where it is refueled.
-
2033-11-01 - The Mars Cruiser rover was designed for long range ground expeditions, having about three weeks worth of supplies. On this day, it was driven 75 km west of the Habitation Module to explore Kasei Valles, the longest outflow channel on Mars. It was thought to have been formed by massive floods of liquid water that occurred billions of years ago, carving through the planet's surface over hundreds of kilometers. As this region was once covered in water, the crew of the Kagutsuchi mission studied and analyzed the ground for any fossilized remains of ancient lifeforms. Over time, the solar wind stripped away the Martian atmosphere (Mars being too small for a magnetic field), and the low temperatures and pressures caused liquid water to either freeze or evaporate. The crew returned to the base several hours later, and would continue their exploration for 1 year and 5 months. 2035-04-02 - The crew got ready to leave the Habitation Module, entering the Mars Cruiser for one last time and driving back 10 km to the Mars Ascent Vehicle. They climbed back into the MAV, and almost six hours later, the ladders and solar arrays were retracted for launch (to be redeployed once in orbit). The four methalox RL10 engines ignited while the landing legs were tucked in, as the single-stage vehicle ascended to a 200 km orbit. A day later, it caught up and docked with the Mars Transport Vehicle once again. The tapering section of the MTV contained a tank with almost 30 tonnes of liquid methane and oxygen to refuel the MAV, which would be used again to visit the moons of Mars. The MAV was also resupplied with food, water, and other necessities.
-
[JAXA+] 2033-10-29 - The Kagutsuchi Mars Ascent Vehicle lands 10 km from the Habitation Module and Mars Cruiser rover that landed two years earlier. Takeyoshi Homura, Makoto Watanuki, and Akane Furukawa (right to left) become the first Japanese astronauts on Mars.
-
2033-10-29 - The crewed Kagutsuchi Mars Ascent Vehicle undocked from the interplanetary Transport Vehicle, just over an hour before executing the de-orbit burn with the tug stage (1x methalox RL10 engine). This burn was mostly conducted perpendicular to the prograde direction to align the MAV's path to land near the Mars Habitation Module. The tug stage was then separated, and the Hypersonic Inflatable Aerodynamic Decelerator shield inflated. It was slightly smaller than the decelerator used for the MHM (20 instead of 25 m), but was sufficient at reducing velocity such that when the parachutes deployed at 15 km above the surface, a brief force of only 5-6 Gs was experienced by the crew. The shield fell, leaving the landing legs to extend. Four methalox RL10 s ignited for the final descent and landing, softly touching down on the Martian surface. The MAV landed about 10 km south of the MHM in Kasei Valles. The crew of the MAV put on their suits before the cabin was depressurized. Takeyoshi Homura was the first to climb out of the hatch and down the ladder, becoming the first Japanese person on Mars. Followed by Makoto Watanuki and Akane Furukawa, he planted the red sun flag of Japan on the Red Planet. They waited for their ride to the MHM: the Mars Cruiser rover, which drove autonomously to the MAV's landing site, a trip lasting about 10-15 minutes. The three astronauts boarded the Mars Cruiser, driving it back to the MHM, the base where they would live for the next 1.4 years.
-
[JAXA+] 2033-10-26 - The Kagutsuchi Mars Transport Vehicle enters Mars orbit
-
2033-10-26 - The Kagutsuchi MTV arrived at the Red Planet, performing the same maneuvers demonstrated by the Mars Habitation Module. It first inserted into an elliptical orbit with a high point of almost 57000 km, where the vehicle performed a plane change to align itself with the orbit of Phobos on October 27 (using less propellant compared to a plane change near Mars). The day after that, the MTV entered its final orbit of 260 x 240 km as the crew prepared to head down to the surface.
-
[JAXA+] 2033-04-13 - The Earth Departure Stages of the Kagutsuchi Mars Transport Vehicle ignite their engines
-
2033-04-13 - The Kagutsuchi MTV began its journey to Mars as the six LE-7-R engines of the first Earth Departure Stage ignited for over five minutes, putting the vehicle in an elliptical orbit with an apogee of 11,000 km. The EDS was then jettisoned using solid separation motors. Almost four hours later, the second identical EDS fired its engines for about three minutes to put the MTV on course for Mars, then detached. The transfer to Mars would take 6.5 months, with a small course correction using the three LE-5B-3 engines of the Mars Orbit Stage just a few days after leaving Earth. First Earth Departure Stage
-
[JAXA+] 2033-04-10 - The Kagutsuchi Mars Transport Vehicle (1725 tonnes) assembled in Earth orbit
-
2033-01-10 - The first module of the Kagutsuchi Mars Transport Vehicle, which would take people to Mars and back, was launched by a H-Z 204L. It consisted of the Mars Orbit Stage (3x LE-7-R engines and 3x LE-5B-3 engines) and Earth Return Stage (1x LE-7-R and 2x LE-5B-3). The LE-5B-3 engines were used for insertion into an orbit 400 km above Earth. 2033-02-08 - The first of two Earth Departure Stages (6x LE-7-R) were launched by an H-Z 212L, and would dock linearly at the aft end of the MTV. 2033-03-08 - The second EDS was launched by another H-Z 212L. 2033-04-07 - The final assembly flight consisted of the Mars Ascent Vehicle, which would take crews to and from the surface of Mars (with the help of an inflatable deceleration shield, slightly smaller than the one used for the MHM), and the Mars Transport Vehicle Habitat, which the crew would live in on the trip to Mars orbit and back. They were launched by an H-Z 102S with the astronauts Takeyoshi Homura, Makoto Watanuki, and Akane Furukawa on board. The MAV performed a transposition, docking, and extraction with the MTV Hab once in orbit, and used a tug with a single methalox RL10 engine to rendezvous with the rest of the MTV. Once docked, the centrifuge ring inflated and began operating in 3 hours, generating 0.25 Gs of artificial gravity. A few days later, the first Japanese crewed mission to Mars would leave Earth. Total mass in orbit: 1725 tonnes
-
[JAXA+] 2031-10-03 - A DRTS-X satellite in areostationary orbit 2031-10-11 - The Kagutsuchi Mars Habitat Module lands in Kasei Valles
-
2031-09-29 - Nine months later, DRTS-X4, X5, and X6 arrived at Mars (spaced a few hours apart), inserting into an elliptical Mars orbit, performing a plane change maneuver to align with the Martian equator, and inserting into an areostationary orbit. The network was completed by 2031-10-05. 2031-10-08 - About a week afterward, the Kagutsuchi MHM performed its Mars orbit insertion burn, first inserting into an elliptical orbit before a plane change aligned it with the orbit of Phobos, then entering a ~250 km low Martian orbit. On 2031-10-11, the solar arrays and radiators were retracted as the transfer stage de-orbited and separated from the MHM using a pair of retrorockets. The Hypersonic Inflatable Aerodynamic Decelerator (HIAD) expanded to a 25 m diameter, providing ample surface area for the 48-tonne payload to slow down in the Martian atmosphere. The large 70 m parachute deployed 15 km above the surface, then the HIAD detached with another pair of retrorockets. The MHM cut off its parachute before making its final propulsive descent with 4 RL10 engines (CECE methalox version), landing in Kasei Valles, named after the Japanese word for Mars. The solar arrays were redeployed to power four drills, which would extract regolith to convert to radiation shielding. Second Mars Orbit Insertion Landed at Kasei Valles
-
The Kagutsuchi Mars Mission, named after the Japanese god of fire (Mars being known as the "fire star" in East Asia), aimed to send three astronauts to the Red Planet. It would utilize the asymmetrical H-Z 212L. In 2030, the Mars Habitat Module would be sent before the crew, attached to a propulsive capture stage and entering the Martian atmosphere with an inflatable heat shield. The MHM also had a rover called the Mars Cruiser. In 2033, a Mars Transport Vehicle would be assembled in four launches, serving as living space for the crew between Mars and Earth, and carrying the Mars Ascent Vehicle that would take the astronauts to the surface and back to orbit. 2030-12-21 - A week before the launch of the MHM, a Zeta rocket (with a third stage for extra performance) launched three DRTS-X communications relay satellites to Mars, which were almost identical to their counterparts in geostationary orbit. 2030-12-28 - The H-Z 212L launched the Mars Habitation Module. The transfer/capture stage used 1 LE-7-R engine [from the CH4 mod, .cfg modified to have multiple restarts] and 2 LE-5 engines for course corrections. Both the MHM and the relay sats would arrive at Mars in October 2031.