Jacke Posted August 31, 2017 Share Posted August 31, 2017 4 hours ago, akron said: So it works now? nice! Hey, do you mind removing the code on your last post? Squad looks to have updated the Forums and now the code is all over the page There was a bug in the forum update that has since been fixed. Quote Link to comment Share on other sites More sharing options...
akron Posted September 1, 2017 Author Share Posted September 1, 2017 14 hours ago, notJebKerman said: @akron In case you are planning on adding New Horizons... A pretty much finished one is included in the @tygoo7's Tundra Exploration mod. The mod seems pretty much abandoned at this point. With his permission and a new, switchable texture, it could fit in well with other CA parts... This is true but I have a different idea on how I want to do NH. I'd have to modify the source model to the point that I may as well just make it from scratch. While the main geometry of NH is pretty easy to do, the balanced bits like the RCS will be a pain. They're at odd places... Quote Link to comment Share on other sites More sharing options...
CobaltWolf Posted September 1, 2017 Share Posted September 1, 2017 1 hour ago, akron said: This is true but I have a different idea on how I want to do NH. I'd have to modify the source model to the point that I may as well just make it from scratch. While the main geometry of NH is pretty easy to do, the balanced bits like the RCS will be a pain. They're at odd places... Think you'll do integrated RCS? To be fair, you only need it for attitude control (people that only use the OP reaction wheels are lame ) so they don't need to be balanced necessarily. Let me know if there's anything I can do to help you get back in the swing! Quote Link to comment Share on other sites More sharing options...
akron Posted September 1, 2017 Author Share Posted September 1, 2017 12 minutes ago, CobaltWolf said: Think you'll do integrated RCS? To be fair, you only need it for attitude control (people that only use the OP reaction wheels are lame ) so they don't need to be balanced necessarily. Let me know if there's anything I can do to help you get back in the swing! I think so, both attitude and maneuvers because New Horizon's system did both: The problem with RCS-only attitude control is that the SAS in KSP will use up the whole tank before you can say "liftoff" so I think I will add a reaction wheel to it. Even if you were conservative with fuel, it'd be pretty hard to perfectly line up the RCS on NH and not induce any offset; even with RCS helper. I figured it'd be easier to have the RCS built-in and at least centered to the bus and the stuff I expect people to attach to it (HGA and RTG). I'm going to try and get back to things again this weekend since I am off finally. I'll try and be online at the dev hole. Quote Link to comment Share on other sites More sharing options...
CobaltWolf Posted September 1, 2017 Share Posted September 1, 2017 Seriously what is up with the shape of that bus? I don't get it. Quote Link to comment Share on other sites More sharing options...
akron Posted September 1, 2017 Author Share Posted September 1, 2017 7 minutes ago, CobaltWolf said: Seriously what is up with the shape of that bus? I don't get it. It is weird. It is centered to the HGA and offset so the science payload is on the opposite side from the RTG I'm guessing to prevent interference and balance the COM. It is also separated in 3 bulkheads, I'm not sure why. Quote Link to comment Share on other sites More sharing options...
Phineas Freak Posted September 1, 2017 Share Posted September 1, 2017 The HGA is centered along the Y axis (New Horizons is a spin-stabilized spacecraft) so that the antenna can be kept pointed towards the Earth with minimal effort (and ACS propellant). As @akron correctly guessed, the triangular shape helps to separate the RTG from the sensitive scientific instruments (booms were not an option after taking into account the mission mass and funding budgets). It also helps offset the CoM to be exactly under the HGA, so that spin stabilization can be achieved. The bulkheads shield the various spacecraft modules (propulsion, power generation/conditioning and science instruments) from excessive heat losses and the RTG radiation. The KSP SAS can be used for RCS-only attitude control. The various bad results stem from the really overpowered RCS thrusters that stock KSP provides. RSS/RO/RP-0 players (for example) only have that option for attitude control for about 95% of their spacecraft designs (the other one are the really underpowered reaction wheels that cost a lot, are heavy and have a huge power consumption). I do agree that in the case of a NH-style bus the RCS should be integrated (like the "Barquetta" bus). CoM can be difficult to adjust correctly but this also happens on all designs that need/want pinpoint pointing accuracy. Integrated RCS also helps us RSS folks to have realistic space probe designs without too much hassle... (For the record, NH has a quarter coin that is used as a trim weight in order to balance the CoM perfectly) Quote Link to comment Share on other sites More sharing options...
akron Posted September 1, 2017 Author Share Posted September 1, 2017 (edited) 2 hours ago, Phineas Freak said: The HGA is centered along the Y axis (New Horizons is a spin-stabilized spacecraft) so that the antenna can be kept pointed towards the Earth with minimal effort (and ACS propellant). As @akron correctly guessed, the triangular shape helps to separate the RTG from the sensitive scientific instruments (booms were not an option after taking into account the mission mass and funding budgets). It also helps offset the CoM to be exactly under the HGA, so that spin stabilization can be achieved. The bulkheads shield the various spacecraft modules (propulsion, power generation/conditioning and science instruments) from excessive heat losses and the RTG radiation. The KSP SAS can be used for RCS-only attitude control. The various bad results stem from the really overpowered RCS thrusters that stock KSP provides. RSS/RO/RP-0 players (for example) only have that option for attitude control for about 95% of their spacecraft designs (the other one are the really underpowered reaction wheels that cost a lot, are heavy and have a huge power consumption). I do agree that in the case of a NH-style bus the RCS should be integrated (like the "Barquetta" bus). CoM can be difficult to adjust correctly but this also happens on all designs that need/want pinpoint pointing accuracy. Integrated RCS also helps us RSS folks to have realistic space probe designs without too much hassle... (For the record, NH has a quarter coin that is used as a trim weight in order to balance the CoM perfectly) The difficulty here is to make something that can satisfy both the LEGO-like nature of KSP and the want for a fairly accurate replica. It is the same struggle I have with Cassini as to which parts to make universal to fit other craft, and which to be fairly unique and single-use. It is mostly the reason why I tries to convince myself to not do replicas, and I still sorta try not to. The challenge for me is that just about every science mission is purpose built though, with a custom payload and rarely an off-the-shelf bus. I actually can't think of any right now, but I have come across some. Giotto/GEOS and I think Cluster II are off-the-shelf buses Edited September 1, 2017 by akron Quote Link to comment Share on other sites More sharing options...
helaeon Posted September 1, 2017 Share Posted September 1, 2017 Idea not a request. Use or discard as you wish. What about making a structural frame for the probe core for the various bus shapes, something with the node in handy places? Possibly put the RCS on that piece, or handy mount locations. Then you could use that frame for other things or put different probe cores in there as you upgrade the tech tree. Might also give some interesting KIS/KAS options - parts with nodes are way easier to work with on EVA than surface mount. Maybe even hidden framework that only pops on if a node is utilized. if one doesn't want to use the probe core but wants to use the frame might be handy to use as a lander base, extra fuel, a framework for inside a service bay all sorts of things that you'd have less options if it was another differently shaped probe core. Lego like nature could be retained. For example I made an ultralight flying craft using your surveyor frame, a small nuclear reactor, and the USI propellers. The mount locations for the rocket motors were cool so I could make landing "brakes" with the rocket motors but was not boxed into using an integrated thrust package. Quote Link to comment Share on other sites More sharing options...
MaverickSawyer Posted September 1, 2017 Share Posted September 1, 2017 Hmmm... possible solution to the RCS/reaction wheel debate. Call me a heretic if you wish, but... Make the reaction wheels run on very small amounts of monoprop. That gets you the precision pointing of the reaction wheels while using MP like an RCS system would. Quote Link to comment Share on other sites More sharing options...
KerBlitz Kerman Posted September 4, 2017 Share Posted September 4, 2017 On 9/1/2017 at 6:31 PM, helaeon said: Idea not a request. Use or discard as you wish. What about making a structural frame for the probe core for the various bus shapes, something with the node in handy places? Possibly put the RCS on that piece, or handy mount locations. Then you could use that frame for other things or put different probe cores in there as you upgrade the tech tree. Might also give some interesting KIS/KAS options - parts with nodes are way easier to work with on EVA than surface mount. Maybe even hidden framework that only pops on if a node is utilized. if one doesn't want to use the probe core but wants to use the frame might be handy to use as a lander base, extra fuel, a framework for inside a service bay all sorts of things that you'd have less options if it was another differently shaped probe core. Lego like nature could be retained. For example I made an ultralight flying craft using your surveyor frame, a small nuclear reactor, and the USI propellers. The mount locations for the rocket motors were cool so I could make landing "brakes" with the rocket motors but was not boxed into using an integrated thrust package. Only if they could be built to work only with certain parts. Quote Link to comment Share on other sites More sharing options...
akron Posted September 5, 2017 Author Share Posted September 5, 2017 8 hours ago, KerBlitz Kerman said: Only if they could be built to work only with certain parts. @helaeon It would be a bit of challenge. There is a mod that does something very similar to this already, where you have a structural part and you attach "slices" to make the probe itself. I'll find it after some sleep and link it. Quote Link to comment Share on other sites More sharing options...
Rodger Posted September 5, 2017 Share Posted September 5, 2017 Is it this one? https://spacedock.info/mod/1074/OctoSat Continued Quote Link to comment Share on other sites More sharing options...
akron Posted September 5, 2017 Author Share Posted September 5, 2017 3 hours ago, Rodger said: Is it this one? https://spacedock.info/mod/1074/OctoSat Continued Yup, that's the one. Thanks! Quote Link to comment Share on other sites More sharing options...
toric5 Posted September 6, 2017 Share Posted September 6, 2017 would it be possitble to make the probes with RCS on them play a bit nicer with tools like the manuver planner and KER? currently it does not register them as engines (even though i like using them as engines for tiny probes...), making it impossible to really plan manuvers. Quote Link to comment Share on other sites More sharing options...
Rodger Posted September 6, 2017 Share Posted September 6, 2017 RCS Build Aid can tell you how much dV your RCS will provide Quote Link to comment Share on other sites More sharing options...
akron Posted September 6, 2017 Author Share Posted September 6, 2017 (edited) 2 hours ago, toric5 said: would it be possitble to make the probes with RCS on them play a bit nicer with tools like the manuver planner and KER? currently it does not register them as engines (even though i like using them as engines for tiny probes...), making it impossible to really plan manuvers. I think this is just a limitation of KER/MechJeb and the like. I could have sworn KER has an option for including RCS in its calculations though. Check the settings menu. So, here is what I've been working on again. I wanted to save it for later until it was further along, but meh/youonlysinkitintosaturnonce. Who wants a preview? Edited September 6, 2017 by akron Quote Link to comment Share on other sites More sharing options...
miromed Posted September 6, 2017 Share Posted September 6, 2017 (edited) reissued MM patch for RT ProbesPlus_BETA_0.15.1RC, now all antennas and satellites work with RT Spoiler //Support for Coatl Aerospace //Configs by rakol, komodo, akron //CA-A01 Ground Plane Antenna @PART[antenna_tv]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 2500000 %MaxQ = 6000 %EnergyCost = 0.18 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A02 Conic Antenna @PART[antenna_cone_toggle]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 2000000 %EnergyCost = 0.15 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A06 'Quetzal' Omni Antenna @PART[antenna_quetzal]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 1000000 %EnergyCost = 0.1 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A07 Landvermesser Omni Antenna @PART[ca_landv_omni]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 5000000 %MaxQ = 6000 %EnergyCost = 0.15 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A10 Small Folding Dish Antenna @PART[dish_deploy_S]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 90000000 // I don’t know what to do with this one; unsure what the application is intended to be. %EnergyCost = 0.50 %MaxQ = 6000 %DishAngle = 20.0 %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A100 Small Dish Antenna @PART[dish_S]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { @cost = 1000 // a bit more money. !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 36000000000 // should be good to duna, but only just. Needs testing. %EnergyCost = 0.60 // more energy hungry, but we can use solar in the inner system. %DishAngle = 3 // mega-nerf from 55 deg. %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A200 Medium Dish Antenna -- duplicated for new quetzal dish @PART[dish_quetzal]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { @cost = 2000 // more monies. !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 70000000000 // good to dres always, and jool on closer approaches. %EnergyCost = 0.29 // should fit ok in a 0.4 ec/s budget, but worse than higher tech below. %DishAngle = 1 // nerved slightly from 1.5 deg %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A20-B HGA Antenna @PART[ca_landv_orbiter_HGA]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 0 %Mode1OmniRange = 5500000 %MaxQ = 6000 %EnergyCost = 0.2 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.15 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A300 Large Dish Antenna @PART[dish_L]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { @cost = 8000 // age old balance technique: make the awesome thing expensive. !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 125000000000 // should be good out to jool for sure. Unsure what the min range for eeloo is. %EnergyCost = 0.21 // low enough to run on the 0.39 ec/s rtg, better than above. %DishAngle = 0.3 // kept at 0.3, should be a decent trade off. %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-A500 Tatsujin Relay Antenna @PART[dish_tatsujin]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { @cost = 1150 // Slightly more than dish_S, although we are similar in specs. !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 38000000000 // Boosted to a little more than dish_s %EnergyCost = 0.55 // Tiny bit better than dish_S, but see below. %DishAngle = 5 // Better transmitter, later tech, a bit better cone? %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.2 // faster interval %PacketSize = 4 // jumbo packets %PacketResourceCost = 20.0 // but more costly to transmit as a trade off. } } %MODULE[ModuleSPUPassive] {} } //CA-AD1-R Folding Dish Antenna @PART[dish_deploy_S2]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 18000000000 %MaxQ = 6000 %EnergyCost = 0.40 %DishAngle = 20.0 %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-AE20 HGA Antenna and Solar Panel @PART[ca_landv_hga]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 0 %Mode1OmniRange = 5500000 %MaxQ = 6000 %EnergyCost = 0.2 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.15 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CAE-102 Vorona Dish Antenna @PART[ca_vor_dish]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { @cost = 1200 !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0DishRange = 0 %Mode1DishRange = 38000000000 %EnergyCost = 0.55 %DishAngle = 5 %DeployFxModules = 0 %TRANSMITTER { %PacketInterval = 0.2 %PacketSize = 4 %PacketResourceCost = 20.0 } } %MODULE[ModuleSPUPassive] {} } //CAE-A03 Vorona Communication Array @PART[ca_vor_comm]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 4000000 %MaxQ = 6000 %EnergyCost = 0.18 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //CA-KPS KerbNet Position System Antenna @PART[ca_ant_gps]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 0 %Mode1OmniRange = 500000 %EnergyCost = 0.01 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } //Probe //CA06 Quetzal @PART[quetzal]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CA08-M Torekka @PART[torekka]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CA-100B Landvermesser B @PART[ca_landv_orbiter_core]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CAE-200 Vorona @PART[ca_vor_core]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CAE-L165 Fomalhaut @PART[ca_fom_lander]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CA-L100 Landvermesser @PART[ca_landv_core]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CA-Q02-M Barquetta @PART[barquetta]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //CA-Q04-M Tatsujin @PART[tatsujin]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { %MODULE[ModuleSPU] { } %MODULE[ModuleRTAntennaPassive] { %TechRequired = unmannedTech %OmniRange = 3000 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } } //Science //CAE-SAR15 Synthetic-ApertureRadar System @PART[ca_vor_sar]:AFTER[CoatlAerospace]:NEEDS[RemoteTech] { !MODULE[ModuleDataTransmitter] {} @MODULE[ModuleAnimateGeneric] { %allowManualControl = false } %MODULE[ModuleRTAntenna] { %Mode0OmniRange = 500000 %Mode1OmniRange = 4000000 %MaxQ = 6000 %EnergyCost = 0.18 %ProgressFxModules = 0 %TRANSMITTER { %PacketInterval = 0.3 %PacketSize = 2 %PacketResourceCost = 15.0 } } %MODULE[ModuleSPUPassive] {} } UPD: Added another module with an antenna to the end of the list (at first it missed, because it's a scanner) Edited September 6, 2017 by miromed Quote Link to comment Share on other sites More sharing options...
toric5 Posted September 6, 2017 Share Posted September 6, 2017 15 hours ago, akron said: I think this is just a limitation of KER/MechJeb and the like. I could have sworn KER has an option for including RCS in its calculations though. Check the settings menu. So, here is what I've been working on again. I wanted to save it for later until it was further along, but meh/youonlysinkitintosaturnonce. Who wants a preview? HYPE TRAIN COMING THROUGH! Quote Link to comment Share on other sites More sharing options...
notJebKerman Posted September 7, 2017 Share Posted September 7, 2017 (edited) On 9/6/2017 at 4:50 AM, akron said: So, here is what I've been working on again. I wanted to save it for later until it was further along, but meh/youonlysinkitintosaturnonce. Who wants a preview? Cassini! It looks amazing... Edited September 7, 2017 by notJebKerman Quote Link to comment Share on other sites More sharing options...
akron Posted September 7, 2017 Author Share Posted September 7, 2017 (edited) 40 minutes ago, notJebKerman said: Cassini! It looks amazing... Thank you. I hope it still looks good after the textures go on it. Does anyone want to preemptively write some configs for the parts? RT, RO, RealPlume, etc. It would be a huge help getting it ready in time. The antenna will also be SCANsat Radar compatible. The magnetometer will use DMOS configs, along with the "Multispectral" Optical sensor pallet. Not sure if there is enough time to write custom scienceDefs for the Fields and Particle pallet experiments. Edited September 7, 2017 by akron Quote Link to comment Share on other sites More sharing options...
miromed Posted September 7, 2017 Share Posted September 7, 2017 17 minutes ago, akron said: Thank you. I hope it still looks good after the textures go on it. Does anyone want to preemptively write some configs for the parts? RT, RO, RealPlume, etc. It would be a huge help getting it ready in time. The antenna will also be SCANsat Radar compatible. The magnetometer will use DMOS configs, along with the "Multispectral" Optical sensor pallet. Not sure if there is enough time to write custom scienceDefs for the Fields and Particle pallet experiments. I'd love to help, but I only know a little about RT, TweakScale and TextureReplacer. Although if it is painted that where you want to see, I can try. Quote Link to comment Share on other sites More sharing options...
akron Posted September 7, 2017 Author Share Posted September 7, 2017 (edited) 23 minutes ago, miromed said: I'd love to help, but I only know a little about RT, TweakScale and TextureReplacer. Although if it is painted that where you want to see, I can try. Every little bit helps. RT configs should be good enough. If you can, we'd need 2 antenna. The High Gain Dish, which acts as a relay for Huygens (with range out to Jool/Sarnus), and one omni low gain antenna mounted on the LEU. Cassini technically has 2 low gain antenna but one is mounted on the the HGA, so I am abstracting it as part of the dish. Thanks! Correction: Technically, the Huygens and Cassini probe cores will also need RT config. The lander would need enough range to reach orbit Edited September 7, 2017 by akron Quote Link to comment Share on other sites More sharing options...
akron Posted September 8, 2017 Author Share Posted September 8, 2017 Choo choo Quote Link to comment Share on other sites More sharing options...
toric5 Posted September 10, 2017 Share Posted September 10, 2017 when will it be on git? On 9/8/2017 at 2:26 AM, akron said: Choo choo Quote Link to comment Share on other sites More sharing options...
Recommended Posts
Join the conversation
You can post now and register later. If you have an account, sign in now to post with your account.
Note: Your post will require moderator approval before it will be visible.